Skip to main content
Log in

Immunohistochemical investigation of hypoxiclischemic brain damage in forensic autopsy cases

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

A neuropathological study of 41 forensic autopsy cases of hypoxic/ischemic brain damage has been undertaken, using immunohistochemical staining to detect the 70-kDa heat shock protein (hsp70) and the status of the glial cells. In cases surviving 2–5 h after hypoxic/ischemic injury, ischemic cell changes were seen whereas glial reactions were not apparent. In cases of longer survival, neuronal necrosis and a loss of neurons were seen, and these changes were accompanied by proliferation of glial fibrillary acidic protein (GFAP), vimentin-positive astrocytes and microglia which transformed into rod cells or lipid-laden macrophages. In cases with a history of hypoxic attacks, GFAP-positive and vimentin-negative astrocytes had proliferated in the CA3 and CA4 regions of hippocampus. The cases of severe hypoxic injury, such as an asthmatic attack and choking, showed no ischemic changes in the hippocampul neurons. On the other hand, the CA1 pyramidal cells showed neuronal necrosis in a patient suffering from tetralogy of Fallot (TOF), who survived for 2 h after a traffic accident. Therefore, it is suggested that even moderate hypoxic injury induces astrocytosis in the CA3 and CA4 regions and may affect the neuronal proteins and the metabolism, and that in cases with a history of hypoxic attacks neuronal damage may be severe even several hours after ischemic injury. The protein hsp70 expression was found in the CA2, CA3 and CA4 regions in cases of long-term survival after severe hypoxic/ischemic injury and in cases of alcoholic intake or toluene abuse just before acute death. Thus, it is suggested that the detection of hsp70 in the hippocampus indicates hypoxic/ischemic injury or other stress prior to death. In forensic practice, immunohistochemical investigation of the hsp70 and glial cell staining can be of great value for diagnosing not only hypoxic/ischemic brain damage during the process of death but also the victim's past history of hypoxic attacks.

Zusammenfassung

Eine neuropathologische Studie von 41 forensischen Autopsie-Fällen mit hypoxischen/ischämischen Hirnschäden wurde durchgeführt, um das 70-kDA Hitzeschock-Protein (hsp70) und den Zustand der Gliazellen zu untersuchen. In Fällen, in denen der hypoxisch-ischämische Schaden 2–5 Stunden überlebt wurde, waren ischämische Schäden erkennbar, während Glia-Reaktionen noch nicht vorhanden waren. In Fällen längerer Überlebenszeit war ein neuronale Nekrose und ein Verlust von Neuronen zu beobachten, und diese Veränderungen waren begleitet von einer Proliferation des glialen fibrillären sauren Proteins (GFAP), der Vimentin-positiven Astrozyten und der Mikro-Glia, welche in stabförmige Zellen oder lipidbeladene Makrophagen transformierte. In Fällen mit einer Anamnese von hypoxischen Attacken war eine Proliferation GFAP-positiver und Vimentin-negativer Astrozyten in der CA3- und CA4-Region des Hippocampus zu beobachten. Die Fälle mit schwerem hypoxschämischen Schaden, wie Asthma-Anfall und Strangulation, zeighten keine ischämischen Veränderungen in den Neuronen des Hippocampus. Andererseits zeigten die CA 1-Pyramiden-Zellen bei einem Patienten mit Fallot'scher Tetralogie (TOF), welcher zwei Stunden nach einem Verkehrsunfall starb, eine neuronale Nekrose. Daher wird vermutet, daß auch weniger schwere hypoxische Schäden eine Astrozytose in der CA3- und CA4-Region induzieren und einen Einfluß haben dürften auf die neuronalen Proteine und auf den Metabolismus und daß in Fällen mit einer Anamnese hypoxischer Attacken der neuronale Schaden schwer sein kann, sogar mehrere Stunden nach dem ischämischen Schaden. Das Protein hsp70 wurde in den CA2-, CA3- und CA4-Regionen in Fällen langzeitigen Überlebens nach schweren hypoxischen/ischämischen Schäden gefunden und in Fällen, in denen kurz vor dem Tode eine Alkoholaufnahme oder Toluol-Mißbrauch stattfand. Daher wird vermutet, daß ein Nachweis hsp70 im Hypocampus eine hypoxischen Schaden oder einen anderen Streß kurz vor dem Tode an zeigt. In der forensischen Praxis sind die immunhisto chemische Untersuchung von hsp70 und Gliazell-Fär bungen von großer Bedeutung für die Diagnostik nicht nur des hypoxisch-ischämischen Hirnschadens während des Sterbeprozesses, sondern auch für die Diagnostik der Anamnese des Opfers im Hinblick auf hypoxische At tacken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brierley JB, Meldrum BS, Brown AW (1973) The threshold and neuropathology of cerebral “anoxic-ischemic” cell change. Arch Neurol 29: 367–374

    Google Scholar 

  2. Compton JL, MaCarthy BJ (1978) Induction of the Drosophila heat shock response in isolated polytene nuclei. Cell 14: 191–201

    Google Scholar 

  3. du Bois M, Bowman PD, Goldstein GW (1985) Cell proliferation after ischemic injury in gerbil brain. An immunocytochemical and autoradiographic study. Cell Tissue Res 242: 17–23

    Google Scholar 

  4. Gehrmann J, Bonnekoh P, Miyazawa T,Hossmann KA, Kreutzberg GW (1992) Immunocytochemical study of early microglial activation in ischemia. J Cereb Blood Flow Metab 12:257–269

    Google Scholar 

  5. Graham DI (1992) Hypoxia and vascular disorders. In: Adams JH, Duchen LW (eds) Greenfield's neuropathology. Edward Arnold, pp 153–268

  6. Hirano A (1986) A guide to neuropathology. Igaku-shoin, Tokyo

    Google Scholar 

  7. Hom M, Schlote W (1992) Delayed neuronal death and delayed neuronal recovery in the brain following global ischemia. Acta Neuropathol 85:79–87

    Google Scholar 

  8. Kato H, Liu Y, Araki T, Kogure K (1991) Temporal profile of the effects of pretreatment with brief cerebral ischemia on the neuronal damage following secondary ischemic insult in the gerbil: cumulative damage and protective effects. Brain Res 553:238–242

    Google Scholar 

  9. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69

    Google Scholar 

  10. Kirino T, Sano K (1984 a) Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol 62:201–208

    Google Scholar 

  11. Kirino T, Sano K (1984b) Fine structural nature of delayed neuronal death following ischemia in the gerbil hippocampus. Acta Neuropathol 62:209–218

    Google Scholar 

  12. Kirino T, Tsujita Y, Tamura A (1991) Induced tolerance to ischemia in gerbil hippocampal neuron. J Cereb Blood Flow Metab 11:299–307

    Google Scholar 

  13. Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, Handa N, Fukunaga R, Kimura K, Mikosiba K, Kamada T (1990) ‘Ischemic tolerance’ phenomenon found in the brain. Brain Res 528:21–24

    Google Scholar 

  14. Kwei S, Jiang C, Haddad GG (1993) Acute anoxia-induced alterations in MAP2 immunoreactivity and neuronal morphology in rat hippocampus. Brain Res 620:203–210

    Google Scholar 

  15. Li G (1983) Induction of thermotolerance and enhanced heat shock protein synthesis in Chinese hamster fibroblasts by sodium arsenite and by ethanol. J Cell Physiol 115:116–122

    Google Scholar 

  16. Lim R (1988) Glia maturation factor: an update. In: Norenberg M, Hertz L, Schousboc A(eds) The biochemical pathology of astrocytes (Neurology and neurobiology vol 39). Alan R. Liss, New York, pp 67–78

    Google Scholar 

  17. Mannoji H, Yeger H, Becker LE (1986) A specific histochemical marker (lectin Ricinus communis agglutinin-1) for normal human microglia, and application to routine histopathology. Acta Neuropathol 71: 341–343

    Google Scholar 

  18. Matsumoto M, Yamamoto K, Homburger HA, Yanagihara T (1987) Early detection of cerebral ischemic damage and repair process in the gerbil by use of an immunohistochemical technique. Mayo Clin Proc 62:460–472

    Google Scholar 

  19. Merril JE, Kutsunai S, Mohlstrom C, Hofman F, Groopman L, Golde DW (1984) Proliferation of astroglia and oligodendroglia in response to human T cell-derived factors. Science 224:1428–1430

    Google Scholar 

  20. Meyer FB (1989) Calcium, neuronal hyperexcitability and ischemic injury. Brain Res Brain Res Rev 14:227–243

    Google Scholar 

  21. Morioka T, Kalehua AN, Streit WJ (1991) The microglial reaction in the rat dorsal hippocampus following transient forebrain ischemia. J Cereb Blood Flow Metab 11: 966–973

    Google Scholar 

  22. Nagagomi T, Kirino T, Kanemitsu H, Tsujita Y, Tamura A (1993) Early recovery of protein synthesis following ischemia in hippocampal neurons with induced tolerance in the gerbil. Acta Neuropathol 86:10–15

    Google Scholar 

  23. Ng T, Graham DI, Adams JH, Ford I (1989) Changes in the hippocampus and the cerebellum resulting from hypoxic insults: frequency and distribution. Acta Neuropathol 78:438–443

    Google Scholar 

  24. O'Callaghan JP, Brinton RE, MacEwen BS (1989) Glucocorticoids regulate the concentration of glial fibrillary acidic protein throughout the brain. Brain Res 494: 159–161

    Google Scholar 

  25. Petito CK, Feldmann E, Pulsinelli WA, Plum F (1987) Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology 37:1281–1286

    Google Scholar 

  26. Petito CK, Morgello S, Felix JC, Holden LM (1988) Astrocytes in cerebral ischemia. In: Norenberg MD, Hertz L, Schousboe A (eds) The biochemical pathology of astrocytes (Neurology and neurobiology, vol 39). Alan R. Liss, New York, pp 341–349

    Google Scholar 

  27. Petito CK, Morgello S, Felix JC, Lesser ML (1990) The two patterns of reactive astrocytosis in postischemic rat brain. J Cereb Blood Flow Metab 10: 850–859

    Google Scholar 

  28. Sawada M, Suzunura A, Ohno K, Marunouchi T (1993) Regulation of astrocyte proliferation by prostaglandin E2 and the a subtype of protein kinase C. Brain Res 613:67–73

    Google Scholar 

  29. Schneider M (1961) Survival and revival of the brain in anoxia and ischemia. In: Meyer JS, Gastaut H (eds) Cerebral anoxia and the encephalogram. Charles C Thomas, Springfield, pp 134–143

    Google Scholar 

  30. Schlesinger M (1986) Heat shock protein: the search for functions. J Cell Biol 103: 321–325

    Google Scholar 

  31. Sciandra JJ, Subjeck JR, Hughes CS (1984) Induction of glucose-regulated proteins during anaerobic exposure and of heat shock proteins after reoxygenation. Proc Natl Acad Sci USA 81:4843–4847

    Google Scholar 

  32. Smith ML, Auer RN, Siesjö BK (1984) The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol 64:319–332

    Google Scholar 

  33. Tranque PA, Suarez I, Olmos G, Fernandez B, Garcia-Segura LM (1987) Estradiol — induced redistribution of glial fibrillary acidic protein immunoreactivity in the rat brain. Brain Res 406: 348–351

    Google Scholar 

  34. Takeda S, Ikuta F (1992) Neuronal vulnerability to hypoxia and hypoglycemia. Adv Neurol Sci 36:236–260 (in Japanese with English abstract)

    Google Scholar 

  35. Vass K, Welch WJ, Nowak TS Jr (1988) Localization of 70kDa stress protein induction in gerbil brain after ischemia. Acta Neuropathol 77: 128–135

    Google Scholar 

  36. Yamamoto K, Yoshimine T, Homburger HA, Yanagihara T (1986) Immunohistochemical investigation of regional cerebral ischemia in the gerbil: occlusion of the posterior communicating artery. Brain Res 371:244–252

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitamura, O. Immunohistochemical investigation of hypoxiclischemic brain damage in forensic autopsy cases. Int J Leg Med 107, 69–76 (1994). https://doi.org/10.1007/BF01225492

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01225492

Key words

Schlüsselwörter

Navigation