Skip to main content
Log in

Cohomology of power sets with applications in quantum probability

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Square integrable Wiener functionals may be represented as sums of multiple Itô integrals. This leads to an identification of such functionals with square integrable functions on the symmetric measure space of the Lebesgue spaceR +. When the pointwise product of Wiener functionals is thus carried over, the product takes a pleasing form (cf. Wick's theorem) and various non-commutative perturbations of this “Wiener product” have been considered. Here we employ cohomological arguments to analyse deformations of an abstract Wiener product. This leads to the construction of Lévy fields which are neither bosonic nor fermionic, and also gives rise to homotopies between quasi-free boson and fermion fields. Finally we unify existence and uniqueness results for quantum stochastic differential equations by treating mixed noise differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acardi, L., Parthasarathy, K. R.: A martingale characterisation of canonical commutation and anti-commutation relations. J. Funct. Anal.77, 211–231 (1988)

    Google Scholar 

  2. Applebaum, D. B., Hudson, R. L.: Fermion Itô's formula and stochastic evolutions. Commun. Math. Phys.96, 473–496 (1984)

    Google Scholar 

  3. Bargmann, V.: On unitary ray representations of continuous groups. Ann. Math.59, 1–46 (1954)

    Google Scholar 

  4. Bargmann, V., Wigner, E. P.: Group theoretical discussion of relativistic wave equations. Proc. Natl. Acad. Sci. USA34, 211–223 (1948)

    Google Scholar 

  5. Guichardet, A.: Symmetric Hilbert spaces and related topics. Lecture Notes in Mathematics vol. 261 Berlin, Heidelberg, New York: Springer 1972

    Google Scholar 

  6. Hudson, R. L., Lindsay, J. M., Parthasarathy, K. R.: Stochastic integral representation of some quantum martingales in Fock space. In: From local times to global geometry, control and physics. Elworthy, K. D. (ed.) Research Notes in Mathematics vol.150, pp. 121–131. London: Pitman 1986

    Google Scholar 

  7. Hudson, R. L., Parthasarathy, K. R.: Quantum Itô's formula and stochastic evolutions. Commun. Maths. Phys.93, 301–323 (1984)

    Google Scholar 

  8. Hudson, R. L., Parthasarathy, K. R.: Unification of fermion and boson stochastic calculus, Commun. Math. Phys.104, 457–470 (1986)

    Google Scholar 

  9. Lindsay, J. M., Maassen, H.: The stochastic calculus of bose noise, Preprint, 1988

  10. Lindsay, J. M., Maassen, H.: An integral kernel approach to noise. In: Quantum probability and applications III (Proceedings, Oberwolfach 1987). Accardi, L., von Waldenfels, W. (eds.) Lecture Notes in Mathematics, pp. 192–208. Berlin, Heidelberg, New York: Springer 1988

    Google Scholar 

  11. Lindsay, J. M.: Parthasarathy, K. R.: Rigidity of the Poisson convolution. In: 2nd Heidelberg workshop on quantum probability. Accardi, L., von Waldenfels, W. (eds.) Lecture Notes in Mathematics. Berlin, Heidelberg, New York: Springer to appear, 13pp.

  12. Maassen, H.: Quantum Markov processes on Fock space described by integral kernels. In: Quantum probability and applications II. Accardi, L., von Waldenfels, W. (eds.) Lecture Notes in Mathematics vol.1136, pp. 361–374. Berlin, Heidelberg, New York: Springer 1985

    Google Scholar 

  13. Mackey: G. W., Unitary representations of group extensions. I, Acta. Math.99, 265–311 (1958)

    Google Scholar 

  14. Meyer, P. A.: Eléments de probabilités quantiques I–V: Sém Prob. XX. Lecture Notes in Mathematics, vol.1204, pp. 186–312. VI–VIII Sém Prob XXI. Lecture Notes in Mathematics, vol.1247, pp. 34–80. Berlin, Heidelberg, New York: Springer 1986, 1987

    Google Scholar 

  15. Meyer, P. A.: Fock space and probability theory. Bielefeld Preprint, 1985

  16. Parthasarathy, K. R.: A unified approach to classical, bosonic and fermionic brownian motion. In: Proc. Lévy Centenary Col., 1987 (Astérisque, Soc. Math. de France)

  17. Varadarajan, V. S.: Geometry of quantum theory. New York: van Nostrand, 1968, 1970

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Araki

Address from September 1988; Department of Mathematics, King's College, London WC2R2LS, UK

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindsay, J.M., Parthasarathy, K.R. Cohomology of power sets with applications in quantum probability. Commun.Math. Phys. 124, 337–364 (1989). https://doi.org/10.1007/BF01219655

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01219655

Keywords

Navigation