Skip to main content
Log in

Large volume limit of the distribution of characteristic exponents in turbulence

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For spatially extended conservative or dissipative physical systems, it appears natural that a density of characteristic exponents per unit volume should exist when the volume tends to infinity. In the case of a turbulent viscous fluid, however, this simple idea is complicated by the phenomenon of intermittency. In the present paper we obtain rigorous upper bounds on the distribution of characteristic exponents in terms of dissipation. These bounds have a reasonable large volume behavior. For two-dimensional fluids a particularly striking result is obtained: the total information creation is bounded above by a fixed multiple of the total energy dissipation (at fixed viscosity). The distribution of characteristic exponents is estimated in an intermittent model of turbulence (see [7]), and it is found that a change of behavior occurs at the valueD=2.6 of the self-similarity dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Betchov, R.: An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech.1, 497–504 (1956)

    Google Scholar 

  2. Brachet, M.: Intégration numérique des équations de Navier-Stokes en régime de turbulence développée. C.R. Acad. Sci. Paris294, Série II, 537–540 (1982)

    Google Scholar 

  3. Chorin, A.J.: The evolution of a turbulent vortex. Commun. Math. Phys.83, 517–535 (1982)

    Google Scholar 

  4. Douady, A., Oesterlé, J.: Dimension de Hausdorff des attracteurs. C.R. Acad. Sci. Paris290 A, 1135–1138 (1980)

    Google Scholar 

  5. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman lectures on physics. Reading, Mass.: Addison-Wesley 1963(I), 1964(II), 1965(III)

  6. Foias, C., Temam, R.: Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations. J. Math. Pure Appl.58, 339–368 (1979)

    Google Scholar 

  7. Frisch, U., Sulem, P.-L., Nelkin, M.: A simple dynamical model of intermittent fully developed turbulence. J. Fluid Mech.87, 719–736 (1978)

    Google Scholar 

  8. Fujisaka, H., Mori, H.: A maximum principle for determining the intermittency exponent of fully developed steady turbulence. Progr. Theor. Phys.62, 54–60 (1979)

    Google Scholar 

  9. Girault, V., Raviart, P.-A.: Finite element approximation of the Navier-Stokes equation. In: Lecture Notes in Mathematics, Vol. 749. Berlin, Heidelberg, New York: Springer 1979

    Google Scholar 

  10. Kraichnan, R.H.: On Kolmogorov's inertial-range theories. J. Fluid Mech.62, 305–330 (1974)

    Google Scholar 

  11. Ladyzhenskaya, O.A.: The mathematical theory of viscous incompressible flow (2nd ed.). Moscow: Nauka, 1970 [2nd english ed. New York: Gordon and Breach 1969]

    Google Scholar 

  12. Ledrappier, F.: Some relations between dimension and Lyapounov exponents. Commun. Math. Phys.81, 229–238 (1981)

    Google Scholar 

  13. Leith, C.: Chaos and order in wheather prediction. Order in chaos (Los Alamos, 1982) North-Holland (to be published)

  14. Lieb, E., Thirring, W.: Inequalities for the moments of the eigenvalues of the Schrödinger equation and their relation to Sobolev inequalities. In: Studies in Mathematical Physics: Essays in honor of Valentine Bargman, Lieb, E., Simon, B., Wightman, A.S. (eds.), pp. 269–303. Princeton, NJ: Princeton University Press 1976

    Google Scholar 

  15. Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites non-linéaires. Paris 1969

  16. Mallet-Paret, J.: Negatively invariant sets of compact maps and an extension of a theorem of Cartwright. J. Diff. Eq.22, 331–348 (1976)

    Google Scholar 

  17. Mandelbrot, B.: Intermittent turbulence and fractal dimension: kurtosis and the spectral exponent 5/3 +B. In: Turbulence and the Navier-Stokes equations. Lecture Notes in Mathematics, Vol. 565, pp. 121–145. Berlin, Heidelberg, New York: Springer 1976

    Google Scholar 

  18. Mañé, R.: On the dimension of the compact invariant sets of certain nonlinear maps (preprint)

  19. Mañé, R.: Lyapounov exponents and stable manifolds for compact transformations (preprint)

  20. Monin, A.S., Yaglom, A.M.: Statistical fluid mechanics: mechanics of turbulence. Moscow: Nauka, 1965 [english transl.: 2 Vol. (ed. by J. L. Lumley). Cambridge, Mass.: MIT Press 1971 and 1975]

    Google Scholar 

  21. Novikov, E.A., Steward, R.W.: Intermittency of turbulence and the spectrum of fluctuations of energy dissipation. Izv. Akad. Nauk SSSR Ser. Geofiz.3, 408–413 (1964)

    Google Scholar 

  22. Oseledec, V.I.: A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Tr. Moskov Mat. Obšč.19, 179–210 (1968) [english transl.: Transl. Moscow Math. Soc.19, 197–221 (1968)]

    Google Scholar 

  23. Raghunathan, M.S.: A proof of Oseledec' multiplicative ergodic theorem. Israel J. Math.32, 356–362 (1979)

    Google Scholar 

  24. Reed, M., Simon, B.: Methods of modern mathematical physics. New York: Academic Press 1972(I), 1975(II), 1979(III), 1978(IV)

    Google Scholar 

  25. Ruelle, D.: An inequality for the entropy of differentiable maps. Bol. Soc. Bras. Mat.9, 83–87 (1978)

    Google Scholar 

  26. Ruelle, D.: What are the measures describing turbulence? Progr. Theor. Phys. Suppl.64, 339–345 (1978)

    Google Scholar 

  27. Ruelle, D.: Microscopic fluctuations and turbulence. Phys. Lett.72A, 81–82 (1979)

    Google Scholar 

  28. Ruelle, D.: Measures describing a turbulent flow. Ann. N.Y. Acad. Sci.357, 1–9 (1980)

    Google Scholar 

  29. Ruelle, D.: Characteristic exponents and invariant manifolds in Hilbert space. Ann. Math.115, 243–290 (1982)

    Google Scholar 

  30. Shaw, R.: Strange attractors, chaotic behavior, and information flow. Santa Cruz Preprint (1977)

  31. Siggia, E.: Invariants for the one-point vorticity and strain rate correlation functions. Phys. Fluids24, 1934–1936 (1981)

    Google Scholar 

  32. Sinai, Ya.G.: On the entropy per particle for the dynamical system of hard spheres (preprint)

  33. Temam, R.: Navier-Stokes equations. Revised edition. Amsterdam: North-Holland 1979

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruelle, D. Large volume limit of the distribution of characteristic exponents in turbulence. Commun.Math. Phys. 87, 287–302 (1982). https://doi.org/10.1007/BF01218566

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01218566

Keywords

Navigation