Skip to main content
Log in

Global spinor fields in space-time

  • Research Articles
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

This paper is concerned with space-time manifolds that are space- and time-oriented, causal, and possess spinor structures. Five propositions are proven: (1) If a connected, space- and time-oriented manifold is simply con-nected, then it is non-compact; (2) If such a manifold is simply connected, it admits a spinor structure, which, moreover, is unique; (3) If the space-like section of M is compact, then there exists a global system of orthonormal tetrads on M; (4) The necessary and sufficient condition for every space-time M whose space-like section is compact to admit a spinor structure is that M have a global system of orthonormal tetrads; (5) Every space-time M which can be imbedded in R6 admits a spinor structure. It is further suggested that in view of the fact that the existence of a spinor structure is related to homotopy properties, space-time manifolds may be classified in terms of their homotopy groups πi (M), i=1,2, 3,4. In a concluding section, some avenues for future research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Penrose, R. (1968). InBattelle Rencontres, (eds. DeWitt, C. M. and Wheeler, J. A.), (Benjamin, New York).

    Google Scholar 

  2. Infeld, L. and van der Waerden, B. L. (1933).Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., p. 380, and references cited therein. See also: Cartan, E. (1966).The Theory of Spinors, (M. I. T. Press, Cambridge, Massachusetts). For the applications of spinors in general relativity, see, for example: Penrose, R. (1960).Ann. Phys.,10, 171; and also: Pirani, F. A. E. (1965). InLectures on General Relativity, Brandeis Simmer Institute in Theoretical Physics, 1964, Vol. 1, (Prentice Hall, New Jersey). See also Ref. [1].

  3. See for example: van der Waerden, B. L. (1932).Die Gruppentheoretische Methode in der Quantenmechanik, (Springer, Berlin). For a current reference, see: Geroch, R. (1968).J. Math. Phys.,9, 1739; Crumeyrolle, A. (1969).Ann. Inst. Henri Poinaaré,A11, 19.

    Google Scholar 

  4. Lichnerowicz, A. (1968). InBattelle Rencontres, (Benjamin, New York). See also Ref. [3].

    Google Scholar 

  5. Borel, A. and Hirzebruch, F. (1958).Am. J. Math.,80, 458; (1959).Am. J. Math.,81, 315; Milnor, J. (1963).L'Enseignement Math.,9, 198; and also Ref. [4].

    Google Scholar 

  6. Steenrod, N. (1951).The Topology of Fibre Bundles, (Princeton University Press, Princeton, New Jersey), p. 199.

    Google Scholar 

  7. See Ref. [6], section 29.

    Google Scholar 

  8. Milnor, J. (1957).Lectures on Characteristic Classes, (Mimeographed notes, Princeton University).

  9. Bass, R. W. and Witten, L. (1957).Rev. Mod. Phys.,29, 452; Kronheimer, E.H. and Penrose, R. (1967).Proc. Comb. Phil. Soc.,63, 481; and also Ref. [1].

    Google Scholar 

  10. See Ref. [6], sections 39–40.

    Google Scholar 

  11. Most algebraic topology texts have this theorem. For example: Greenberg, M. (1967).Lectures on Algebraic Topology, (Ben jamin, New York); Hu, S. T. (1968).Cohomology Theory, (Markham, New York); Spanier, E. H. (1966).Algebraic Topology, (McGraw-Hill, New York).

    Google Scholar 

  12. See Ref. [6], p. 167.

    Google Scholar 

  13. See Refs. [1,3,6]

  14. Stiefel, E. (1936).Comm. Math. Helv.,8, 3; see also: Whitney, H. (1941). InLectures in Topology, (eds. Wilder, R. L. and Ayres, W. L.), (University of Michigan Press, Ann Arbor, Michigan); Ref. [6], p. 203.

    Google Scholar 

  15. See, for example, Ref. [6] p. 201.

    Google Scholar 

  16. See, for example, Ref. [8] and Spanier, E. H. in Ref. [11].

  17. Whitney, H. in Ref. [14](.

    Google Scholar 

  18. See, for example, Ref. [17], 3, and Ref. [6], p. 201.

    Google Scholar 

  19. Geroch, R. P. (1967). (Ph.D. dissertation, Princeton University).

  20. Hawking, S. W. (1965).Phys. Rev. Lett.,15, 689; see also: Geroch, R. P. (1967).J. Math. Phys.,8, 782.

    Google Scholar 

  21. Ehlers, J., Geren, P. and Sachs, R. K. (1968).J. Math. Phys.,9, 1344; see also: Kundt, W. (1968). InSpringer Tracts in Modern Physios, Vol. 47, (Springer-Verlag, New York).

    Google Scholar 

  22. Aharonov, Y. and Susskind, L. (1967).Phys. Rev.,158, 1237.

    Google Scholar 

  23. Geroch, R.P. (1970).J. Math. Phys.,11, 343.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K.K. Global spinor fields in space-time. Gen Relat Gravit 4, 421–433 (1973). https://doi.org/10.1007/BF01215402

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01215402

Keywords

Navigation