Skip to main content
Log in

Fine structure of initial outgrowth of processes induced in a pheochromocytoma cell line (PC12) by nerve growth factor

  • Published:
Journal of Neurocytology

Summary

Cells of the PC12 line (which is derived from a rat pheochromocytoma) develop neuron-like processes upon exposure to nerve growth factor (NGF), and thus provide an opportunity to study this phenomenonde novo. We have used the transmission electron microscope to analyse the early stages of process outgrowth (1, 2, 3 and 7 days) to determine what organelles are involved and in what sequence they appear during development. Despite the non-synchronous response to NGF, we can derive three main stages in early process formation. (1) NGF-treated cells develop conical extensions similar to, but larger and more numerous than those of controls. Extensions terminate in bulbous expansions that contain large number of chromaffin-like granules and bear microspikes filled with microfilaments. (2) The extensions of NGF-treated cells then acquire membranous organelles indicative of transmitter packaging and/or recycling of cytoplasmic membranes, for example, tubular reticulum, clear and dense-cored vesicles, multivesicular bodies, and lysosomes. (3) As processes elongate, they develop a shaft that contains an array of microtubules and fine tubular reticulum dispersed in a filamentous matrix, and varicosities that exhibit the same organelles seen in stage 2. The discussion stresses the similarities in the outgrowth of processes in PC12 cells and neurons, and speculates that NGF causes a change in organization and/or quantity of organelles that already exist in non-treated control cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birks, R. I., Mackey, M. C. andWeldon, R. P. (1972) Organelle formation from pinocytotic elements in neurites of cultured sympathetic ganglia.Journal of Neurocytology 1, 311–40.

    PubMed  Google Scholar 

  • Bocchini, V. andAngeletti, P. U. (1969) The nerve growth factor: Purification as a 30 000—molecular weight protein.Proceedings of the National Academy of Sciences (U.S.A.) 64, 787–94.

    Google Scholar 

  • Bornstein, M. B. (1958) Reconstituted rat-tail collagen used as substrate for tissue cultures on cover slips in Maximov slides and roller tubes.Laboratory Investigation 7, 134–7.

    PubMed  Google Scholar 

  • Bray, D. andBunge, M. B. (1973) The growth cone in neurite extension. InLocomotion of Tissue Cells. Ciba Foundation Symposium 14, 195–209.

    Google Scholar 

  • Bunge, M. B. (1973) Fine structure of nerve fibers and growth cone of isolated sympathetic neurons in culture.Journal of Cell Biology 56, 713–35.

    PubMed  Google Scholar 

  • Bunge, M. B. (1977) Initial endocytosis of peroxidase or ferritin by growth cones of cultured nerve cells.Journal of Neurocytology 6, 407–39.

    PubMed  Google Scholar 

  • Dalton, A. J. (1955) A chrome—osmium fixative for electron microscopy.Anatomical Record 121, 281 (Abstract).

    Google Scholar 

  • Droz, B., Rambourg, A. andKoenig, H. L. (1975) The smooth endoplasmic reticulum: Structure and role in the renewal of axonal membrane and synaptic vesicles by fast axonal transport.Brain Research 93, 1–13.

    PubMed  Google Scholar 

  • Fox, G. Q., Pappas, G. D. andPurpura, D. P. (1976) Fine structure of growth cones in medullary raphé nuclei in the postnatal cat.Brain Research 101, 411–25.

    PubMed  Google Scholar 

  • Geffen, L. B. andLivett, B. G. (1971) Synaptic vesicles in sympathetic neurons.Physiological Reviews 51, 98–151.

    PubMed  Google Scholar 

  • Glauert, A. M. (1975) Fixation, dehydration and embedding of biological specimens. InPractical Methods in Electron Microscopy (edited byGlauert, A.), Amsterdam, New York: North Holland/American Elsevier.

    Google Scholar 

  • Greene, L. A. andRein, G. (1977a) Release, storage and uptake of catecholamines by a clonal cell line of nerve growth factor (NGF) responsive pheochromocytoma cells.Brain Research 129, 247–63.

    PubMed  Google Scholar 

  • Greene, L. A. andRein, G. (1977b) Synthesis, storage and release of acetylcholine by a noradrenergic pheochromocytoma cell line.Nature 268, 349–51.

    PubMed  Google Scholar 

  • Greene, L. A. andTischler, A. S. (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor.Proceedings of the National Academy of Sciences (U.S.A.) 73, 2424–8.

    Google Scholar 

  • Hendry, I. A., Stöckel, K., Thoenen, H. andIversen, L. L. (1974) The retrograde axonal transport of nerve growth factor.Brain Research 68, 103–21.

    PubMed  Google Scholar 

  • Hinds, J. W. andHinds, P. L. (1972) Reconstruction of dendritic growth cones in neonatal mouse olfactory bulb.Journal of Neurocytology 1, 169–87.

    PubMed  Google Scholar 

  • Hinek, A., Thyberg, J. andFriberg, U. (1977) Electron microscopic studies on embryonic chick spinal ganglion cells: relationship between microtubules and the Golgi complex.Journal of Neurocytology 6, 13–25.

    PubMed  Google Scholar 

  • Hökfelt, T. (1973) On the origin of small adrenergic storage vesicles: Evidence for local formation in nerve endings after chronic reserpine treatment.Experientia 29, 580–2.

    PubMed  Google Scholar 

  • Holtzman, E. andDominitz, R. (1968) Cytochemical studies of lysosomes, Golgi apparatus and endoplasmic reticulum in secretion and protein uptake by adrenal medulla cells of the rat.Journal of Histochemistry and Cytochemistry 16, 320–36.

    PubMed  Google Scholar 

  • Holtzman, E., Teichberg, S., Abrahams, J. J., Citkowitz, E., Crain, S. M., Kawai, N. andPeterson, E. R. (1973) Notes on synaptic vesicles and related structures, endoplasmic reticulum, lysosomes and peroxisomes in nervous tissue and the adrenal medulla.Journal of Histochemistry and Cytochemistry 21, 349–85.

    PubMed  Google Scholar 

  • Landis, S. C. (1978) Growth cones of cultured sympathetic neurons contain adrenergic vesicles.Journal of Cell Biology 78, R8-R14.

    Google Scholar 

  • La Vail, M. M. andLa Vail, J. H. (1975) Retrograde intra-axonal transport of horseradish peroxidase in retinal ganglion cells of the chick.Brain Research 85, 273–80.

    PubMed  Google Scholar 

  • Levi-Montalcini, R., Caramia, F., Luse, S. A. andAngeletti, P. U. (1968)In vitro effects of the nerve growth factor on the fine structure of the sensory nerve cells.Brain Research 8, 347–62.

    PubMed  Google Scholar 

  • Ludueña, M. A. andWessels, N. K. (1973) Cell locomotion, nerve elongation, and microfilaments.Developmental Biology 30, 427–40.

    PubMed  Google Scholar 

  • McGuire, J. C., Greene, L. A. andFurano, A. V. (1978) Nerve growth factor stimulates the incorporation of fucose or glucosamine into an external glycoprotein in cultured rat pheochromocytoma cells.Cell 15, 357–65.

    PubMed  Google Scholar 

  • Richards, J. G. andTranzer, J. P. (1975) Localization of amine storage sites in the adrenergic cell body. A study of the superior cervical ganglion of the rat by fine structural cytochemistry.Journal of Ultrastructure Research 53, 204–16.

    PubMed  Google Scholar 

  • Richardson, K. C. (1966) Electron microscopic identification of autonomie nerve endings.Nature (London) 210, 256.

    Google Scholar 

  • Schubert, D., Heinemann, S. andKidokoro, Y. (1977) Cholinergic metabolism and synapse formation by a rat nerve cell line.Proceedings of the National Academy of Sciences (U.S.A.) 74, 2579–83.

    Google Scholar 

  • Schwab, M. E. andThoenen, H. (1975) Early effects of nerve growth factor on adrenergic neurons: An electron microscopic morphometric study of the rat superior cervical ganglion.Cell and Tissue Research 158, 543–53.

    PubMed  Google Scholar 

  • Skoff, R. P. andHamburger, V. (1974) Fine structure of dendritic and axonal growth cones in embryonic chick spinal cord.Journal of Comparative Neurology 153, 107–47.

    PubMed  Google Scholar 

  • Teichberg, S. andHoltzman, E. (1973) Axonal agranular reticulum and synaptic vesicles in cultured embryonic chick sympathetic neurons.Journal of Cell Biology 57, 88–108.

    PubMed  Google Scholar 

  • Tennyson, V. M. (1970) The fine structure of the axon and growth cone of the dorsal root neuroblast of the rabbit embryo.Journal of Cell Biology 44, 62–79.

    PubMed  Google Scholar 

  • Tischler, A. S. andGreene, L. A. (1978) Morphological and cytochemical studies of a clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor.Laboratory Investigation 39, 77–89.

    PubMed  Google Scholar 

  • Tranzer, J. P. (1972) A new amine storing compartment in adrenergic axons.Nature New Biology 237, 57–8.

    PubMed  Google Scholar 

  • Unsicker, K. andChamley, J. H. (1977) Growth characteristics of postnatal rat adrenal medulla in culture.Cell and Tissue Research 177, 247–68.

    PubMed  Google Scholar 

  • Unsicker, K., Krisch, B., Otten, U. andThoenen, H. (1978) Nerve growth factor-induced fiber outgrowth from isolated rat adrenal chromaffin cells: Impairment by glucocorticoids.Proceedings of the National Academy of Sciences (U.S.A.) 75, 3498–502.

    Google Scholar 

  • Weldon, P. R. (1975) Pinocytotic uptake and intracellular distribution of collodial thorium dioxide by cultured sensory neurites.Journal of Neurocytology 4, 341–56.

    PubMed  Google Scholar 

  • Wessells, N. K., Spooner, B. S., Ash, J. F., Bradley, M. O., Ludueña, M. A., Taylor, E. L., Wrenn, J. T. andYamada, K. M. (1971) Microfilaments in cellular and developmental processes.Science 171, 135–43.

    PubMed  Google Scholar 

  • Wessells, N. K., Spooner, B. S. andLudueña, M. A. (1973) Surface movements, microfilaments and cell locomotion. InLocomotion of Tissue Cells. Ciba Foundation Symposium 14, 53–82.

    Google Scholar 

  • Yamada, K. M., Spooner, B. S. andWessells, N. K. (1970) Axon growth: Roles of microfilaments and microtubules.Proceedings of the National Academy of Sciences (U.S.A.) 66, 1206–12.

    Google Scholar 

  • Yamada, K. M., Spooner, B. S. andWessells, N. K. (1971) Ultrastructure and function of growth cones and axons of cultured nerve cells.Journal of Cell Biology 49, 614–35.

    PubMed  Google Scholar 

  • Yavin, E. andYavin, Z. (1974) Attachment and culture of dissociated cells from rat embryo cerebral hemispheres on polylysine coated surface.Journal of Cell Biology 62, 540–6.

    PubMed  Google Scholar 

  • Zelená, J. andGutmann, E. (1968) Accumulation of organelles at the ends of interrupted axons.Zeitschrift für Zellforschung und mikroskopische Anatomie 91, 200–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luckenbill-Edds, L., Van Horn, C. & Greene, L.A. Fine structure of initial outgrowth of processes induced in a pheochromocytoma cell line (PC12) by nerve growth factor. J Neurocytol 8, 493–511 (1979). https://doi.org/10.1007/BF01214805

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01214805

Keywords

Navigation