Skip to main content
Log in

Characterization and ecological implications of midgut proteolytic activity in larvalPieris rapae andTrichoplusia ni

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

In their larval luminal midgut fluid,Trichoplusia ni (Lepidoptera: Noctuidae) andPieris rapae (Lepidoptera: Pieridae) contain endopeptidases as their primary proteases. Neither species has detectable exopeptidase activity. Studies using enzyme-specific substrates and inhibitors demonstrate that the endopeptidases are serine proteinases (both trypsinlike and chymotrypsinlike) with histidine at the active site. Optimal pH for the tryptic and chymotryptic activity is 8.5 and 8.0, respectively, forT. ni. and 8.0 and 9.0, respectively, forP. rapae. The efficiency of proteolytic digestion (as measured by the rate of in vitro digestion of a standard protein by the midgut luminal fluid) is positively correlated with the larval dietary protein requirement and is significantly influenced by the ratios of tryptic to chymotryptic activity present in the gut lumen of these two species of Lepidoptera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, J.E. 1977. Substrate specificity in the control of digestive enzymes in larvae of the black carpet beetle.J. Insect Physiol. 23:749–753.

    Google Scholar 

  • Baker, J.E. 1981. Resolution and partial characterization of the digestive proteinases from larvae of the black carpet beetle, pp. 283–315,in G. Bhaskaran, S. Friedman, and J.G. Rodriguez (eds.). Current Topics in Insect Endocrinology and Nutrition. Plenum, New York.

    Google Scholar 

  • Berenbaum, M. 1980. Adaptive significance of midgut pH in larval Lepidoptera.Am. Nat. 115:138–146.

    Google Scholar 

  • Broadway, R.M. 1988. Tryptic inhibitory activity in wild and cultivated crucifers.Phytochemistry. 28:755–758.

    Google Scholar 

  • Broadway, R.M., andDuffey, S.S. 1986a. The effect of dietary protein on the growth and digestive physiology of larvalHeliothis zea andSpodoptera exigua.J. Insect Physiol. 32:673–680.

    Google Scholar 

  • Broadway, R.M., andDuffey, S.S. 1986b. Plant proteinase inhibitors: Mechanism of action and effect on the growth and digestive physiology of larvalHeliothis zea andSpodoptera exigua.J. Insect Physiol. 32:827–833.

    Google Scholar 

  • Broadway, R.M., andDuffey, S.S. 1988. The effect of plant protein quality on insect digestive physiology and the toxicity of plant proteinase inhibitors.J. Insect Physiol. 34:1111–1117.

    Google Scholar 

  • Broadway, R.M., Duffey, S.S., Pearce, G., andRyan, C.A. 1986. Plant proteinase inhibitors: A defense against herbivorous insects?Entomol. Exp. Appl. 41:33–38.

    Google Scholar 

  • Cha-Yun, S., andChen, B. 1982. Comparison of the effects of insect intestinal proteases on the crystals ofBacillus thuringiensis.Acta Entomol. Sin. 25:244–249.

    Google Scholar 

  • Chen, I., andMitchell, H.L. 1973. Trypsin inhibitors in plants.Phytochemistry 12:327–330.

    Google Scholar 

  • Espinoza-Fuentes, P.P., andTerra, W.R. 1987. Physiological adaptations for digesting bacteria.Insect Biochem. 17:809–817.

    Google Scholar 

  • Folk, J.E., Piez, K.A., Carroll, W.R., andGladner, J.A. 1960. Carboxypeptidase B. IV. Purification and characterization of the porcine enzyme.J. Biol. Chem. 235:2272–2277.

    PubMed  Google Scholar 

  • Gatehouse, A.M.R., Butler, K.J., Fenton, K.A., andGatehouse, J.A. 1985. Presence and partial characterisation of a major proteolytic enzyme in the larval gut ofCallosobruchus maculatus.Entomol. Exp. Appl. 39:279–286.

    Google Scholar 

  • Gold, A.M. 1965. Sulfonyl fluorides and inhibitors of esterases. III. Identification of serine as the site of sulfonylation of phenylmethane-sulfonyl chymotrypsin.Biochemistry 4:897–901.

    Google Scholar 

  • Goldstein, J.L., andSwain, T. 1965. The inhibition of enzymes by tannins.Phytochemistry 4:185–192.

    Google Scholar 

  • Gothilf, S., andBeck, S.D. 1967. Larval feeding behaviour of the cabbage looper,Trichoplusia ni.J. Insect Physiol. 13:1039–1053.

    Google Scholar 

  • Hilder, V.A., Gatehouse, A.M.R., Sheerman, S.E., Barker, R.F., andBoulter, D. 1987. A novel mechanism of insect resistance engineered into tobacco.Nature 330:160–163.

    Google Scholar 

  • Hummel, B.C.W. 1959. A modified spectrophotometric determination of chymotrypsin, trypsin, and thrombin.Can. J. Biochem. Physiol. 37:1393–1399.

    PubMed  Google Scholar 

  • Ishaaya, I., Moore, I., andJoseph, D. 1971. Protease and amylase activity in larvae of the Egyptian cottonworm,Spodoptera littoralis.J. Insect Physiol. 17:945–953.

    Google Scholar 

  • Law, J.H., Dunn, P.E., andKramer, K.J. 1977. Insect proteases and peptidases.Adv. Enzymol. 45:389–425.

    PubMed  Google Scholar 

  • Maguire, L.A. 1984a. Choosing host plant patch sizes for experiments onPieris rapae (L.) populations (Lepidoptera: Pieridae).Environ. Entomol. 13:459–463.

    Google Scholar 

  • Maguire, L.A. 1984b. Influence of surrounding plants on densities ofPieris rapae (L.) eggs and larvae (Lepidoptera: Pieridae) on collards.Environ. Entomol. 13:464–468.

    Google Scholar 

  • Martin, M.M., andMartin, J.S. 1984. Surfactants: Their role in preventing the precipitation of proteins by tannins in insect guts.Oecologia 61:342–345.

    Google Scholar 

  • Martin, M.M., Kukor, J.J., Martin, J.S., Lawson, D.L., andMerritt, R.W. 1981. Digestive enzymes of larvae of three species of caddisflies (Trichoptera).Insect Biochem. 11:501–505.

    Google Scholar 

  • McClure, W.O., Neurath, H., andWalsh, K.A. 1964. The reaction of carboxypeptidase A with hippuryl-dl-β-phenyllactate.Biochemistry 3:1897–1901.

    Google Scholar 

  • Meisner, J., Ishaaya, I., Ascher, K.R.S., andZur, M. 1978. Gossypol inhibits protease and amylase activity ofSpodoptera littoralis Boisduval larvae.Ann. Entomol. Soc. Am. 71:5–8.

    Google Scholar 

  • Metcalf, C.L., Flint, W.P., andMetcalf, R.L. 1962. Destructive and Useful Insects. McGraw-Hill, New York.

    Google Scholar 

  • Miller, M.W., Kramer, K.J., andLaw, J.H. 1974. Isolation and partial characterization of the larval midgut trypsin from the tobacco hornworm,Manduca sexta, Johannson (Lepidoptera: Sphingidae).Comp. Biochem. Physiol. 488:117–129.

    Google Scholar 

  • Mole, S., andWaterman, P.G. 1987. Tannic acid and proteolytic enzymes: Enzyme inhibition or substrate deprivation?Phytochemistry 26:99–102.

    Google Scholar 

  • Narayanan, K., Govindarajan, R., Subramaniam, T.R., andJayaraj, J. 1976. pH of blood and gut contents of lepidopterous insects and its relation to pathogenicity of two bacterial pathogens.Ind. J. Microbiol. 16:65–67.

    Google Scholar 

  • Renwick, J.A.A., andRadke, C.D. 1988. Sensory cues in host selection for oviposition by the cabbage butterfly,Pieris rapae.J. Insect Physiol. 34:251–257.

    Google Scholar 

  • Sasaki, T., andSuzuki, Y. 1982. Alkaline proteases in digestive juice of the silkworm,Bombyx mori.Biochim. Biophys. Acta 703:1–10.

    PubMed  Google Scholar 

  • Schoellmann, G., andShaw, E. 1963. Direct evidence for the presence of histidine in the active center of chymotrypsin.Biochemistry 2:252–255.

    PubMed  Google Scholar 

  • Shaw, E. 1967. Site-specific reagents for chymotrypsin and trypsin, pp. 677–686,in S.P. Colowick and N.O. Kaplan, (eds.). Methods in Enzymology, Vol. 2. Academic Press, New York.

    Google Scholar 

  • Shorey, H.H., andHale, R.L. 1965. Mass rearing of the larvae of nine noctuid species on a simple artificial medium.J. Econ. Entomol. 58:522–524.

    Google Scholar 

  • Shorey, H.H., Andres, L.A., andHale, R.L. 1962. The biology ofTrichoplusia ni (Lepidoptera: Noctuidae). I. Life history and behavior.Ann. Entomol. Soc. Am. 55:591–597.

    Google Scholar 

  • Smith, P.K., Krohn, R.L, Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., andKlenk, D.C. 1985. Measurement of protein using bicinchoninic acid.Anal. Biochem. 150:76–85.

    PubMed  Google Scholar 

  • Walsh, K.A. 1970. Trypsinogens and trypsin of varous species, pp. 41–44,in G.E. Perlmann and L. Lorand, (eds.). Methods in Enzymology, Vol. 19. Academic Press, New York.

    Google Scholar 

  • Walsh, K.A., andWilcox, P.E. 1970. Serine proteases, pp. 31–41,in G.E. Perlmann and L. Lorand (eds.). Methods in Enzymology, Vol. 19. Academic Press, New York.

    Google Scholar 

  • Ward, C. W. 1975. Resolution of proteases in the keratinolytic larvae of the webbing clothes moth.Aust. J. Biol. Sci. 28:1–23.

    PubMed  Google Scholar 

  • Webb, S.E., andShelton, A.M. 1988. Laboratory rearing of the imported cabbageworm. New York Food and Life Science Bulletin, No. 122.

  • Whitaker, J.R. 1981. Naturally occurring peptides and protein inhibitors of enzymes, pp. 57–104,in J.C. Ayres and J.C. Kirschman (eds.). Impact of Toxicology on Food Processing. AVI Publishers, Westport, Connecticut.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broadway, R.M. Characterization and ecological implications of midgut proteolytic activity in larvalPieris rapae andTrichoplusia ni . J Chem Ecol 15, 2101–2113 (1989). https://doi.org/10.1007/BF01207441

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01207441

Key words

Navigation