Skip to main content
Log in

Catalytic and structural modifications of sarcoplasmic reticulum and plasma membrane (Ca2+ + Mg2+)ATPases induced by organic solutes that accumulate in living systems

  • Review
  • Published:
Bioscience Reports

Abstract

Organic solutes such as urea, methylamines, polyols and amino acid can accumulate in the cytoplasm of cells to compensate for hyperosmotic conditions in the external medium. Whereas urea is considered to be typical of solutes that destabilize structure and function of proteins, methylamines, polyols and some amino acids appear to have the opposite effect, and can also compensate for the perturbing effects of urea. These effects have been extensively analyzed for a variety of proteins in terms of global changes in enzyme structure and acceleration or inhibition of overall reaction rates. Here the influence of these solutes on sarcoplasmic reticulum and plasma membrane (Ca2+ + Mg2+)ATPases is reviewed. The focus is on the changes induced by “perturbing” and “stabilizing” solutes at specific steps of the catalytic cycles of these enzymes, which can run forward (leading to ATP hydrolysis) and backward (leading to ATP synthesis). Structural changes promoted by osmolytes are correlated with functional changes, especially those that are related to energy coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arakawa, T. and Timasheff, S. N. (1982)Biochemistry 21:6536–6544.

    PubMed  Google Scholar 

  • Back, J. F., Oakeenfull, D. and Smith, M. B. (1979)Biochemistry 18:5191–5196.

    PubMed  Google Scholar 

  • Bagnasco, S., Balaban, R., Fales, H. M., Yang, Y.-M. and Burg, M. (1986)J. Biol Chem. 261:5872–5877.

    PubMed  Google Scholar 

  • Balaban, R. S. and Knepper, M. A. (1983)Am. J. Physiol. 245:C439-C444.

    PubMed  Google Scholar 

  • Balaban, R. and Burg, M. (1987)Kidney Int. 31:562–564.

    PubMed  Google Scholar 

  • Bankir, L. and de Rouffignac, C. (1985)Am. J. Physiol. 249:R643-R666.

    PubMed  Google Scholar 

  • Benaim, G. and de Meis, L. (1989)FEBS Lett. 244:484–486.

    PubMed  Google Scholar 

  • Brown, A. D. and Simpson, J. R. (1972)J. Gen. Microbiol. 72:589–591.

    PubMed  Google Scholar 

  • Burg, M. B. (1995)Am. J. Physiol. 268:F983-F996.

    PubMed  Google Scholar 

  • Burg, M. B. and Kador, P. F. (1988)J. Clin, Invest. 81:635–640.

    Google Scholar 

  • Carafoli, E. (1991)Physiol. Rev. 71:129–153.

    PubMed  Google Scholar 

  • Carafoli, E. (1992)J. Biol. Chem. 267:2115–2118.

    PubMed  Google Scholar 

  • Carafoli, E. and Chiesi, M. (1992)Curr. Top. Cell. Reg. 32:209–241.

    Google Scholar 

  • Carvalho, M. G. C., Souza, D. G. and de Meis, L. (1976)J. Biol. Chem. 251:3629–3636.

    PubMed  Google Scholar 

  • Chiesi, M., Zurini, M. and Carafoli, E. (1984)Biochemistry 13:5032–5038.

    Google Scholar 

  • Chini, E. N., Meyer-Fernandes, J. R. and Sola-Penna, M. (1991)Z. Naturforsch. 46c:644–646.

    Google Scholar 

  • Coelho-Sampaio, T., Ferreira, S. T., Benamin, G. and Vieyra, A. (1991)J. Biol. Chem. 266:22266–22272.

    PubMed  Google Scholar 

  • Coelho-Sampaio, T., Ferreira, S. T., Castro Jr., E. J. and Vieyra, A. (1994)Eur. J. Biochem. 221:1103–1110.

    PubMed  Google Scholar 

  • de Meis, L. (1989)Biochim. Biophys. Acta 973:333–349.

    PubMed  Google Scholar 

  • de Meis, L. and Inesi, G. (1988)J. Biol. Chem. 263:157–161.

    PubMed  Google Scholar 

  • de Meis, L., Alves, E. and Martins, O. B. (1980)Biochemistry 19:4252–4261.

    PubMed  Google Scholar 

  • Falchetto, R., Vorherr, T. and Carafoli, E. (1992)Protein Sci. 1:1613–1621.

    PubMed  Google Scholar 

  • Garcia-Perez, A. and Burg, M. B. (1991)Physiol. Rev. 71:1081–1115.

    PubMed  Google Scholar 

  • Gekko, K. and Timasheff, S. N. (1981)Biochemistry 20:4667–4676.

    PubMed  Google Scholar 

  • Gopinath, R. M. and Vincenzi, F. F. (1977)Biochem. Biophys. Res. Commun. 77:1203–1209.

    PubMed  Google Scholar 

  • Green, N. M. (1989)Biochem. Soc. Trans. 17:972–974.

    PubMed  Google Scholar 

  • Gullans, S. R., Blumenfeld, J. D., Balschi, J. A., Kaleta, M., Brenner, R. M., Heilig, C. W. and Hebert, S. C. (1988)Am. J. Physiol. 255:F626-F634.

    PubMed  Google Scholar 

  • Inesi, G., Zhang, Z., Sagara, Y. and Kirtley, M. E. (1994)Biophys. Chem. 50:129–138.

    PubMed  Google Scholar 

  • Jarrett, H. W. and Penniston, J. T. (1977)Biochem. Biophys. Res. Commun. 77:1210–1216.

    PubMed  Google Scholar 

  • Jorge-Garcia, I., Bigelow, D. J., Inesi, G. and Wade, J. B. (1988)Arch. Biochem. Biophys. 265:82–90.

    PubMed  Google Scholar 

  • Kinne, R. (1993)J. Exp. Zool. 265:346–355.

    PubMed  Google Scholar 

  • Kosk-Kosicka, D., Bzdega, T. and Wawrzynow, A. (1989)J. Biol. Chem. 264:19495–19499.

    PubMed  Google Scholar 

  • Lin, T.-Y. and Timasheff, S. N. (1994)Biochemistry 33:12695–12701.

    PubMed  Google Scholar 

  • Mashino, T. and Fridovich, I. (1987)Arch. Biochem. Biophys. 258:356–360.

    PubMed  Google Scholar 

  • Masuda, H. and de Meis, L. (1973)Biochemistry 12:4581–4585.

    PubMed  Google Scholar 

  • Missiaen, L., Wuytack, F., Raeymaekers, L., De Smedt, H., Droogmans, G., Declerck, I. and Casteels, R. (1991)Pharm. Ther. 50:191–232.

    Google Scholar 

  • Nakanishi, T., Uyama, O. and Sugita, M. (1992)Amino Acids 3:131–138.

    Google Scholar 

  • Niggli, V., Penniston, J. T. and Carafoli, E. (1979)J. Biol. Chem. 254:9955–9958.

    PubMed  Google Scholar 

  • Parker, A. J. (1962)Q. Rev. 16:163–187.

    Google Scholar 

  • Pedersen, P. and Carafoli, E. (1987)Trends Biochem. Sci. 12:186–189.

    Google Scholar 

  • Penniston, J. T. and Enyedi, A. (1994)Cell Physiol. Biochem. 4:148–159.

    Google Scholar 

  • Pierce, S. K. and Politis, A. D. (1990)Annu. Rev. Physiol. 52:27–42.

    PubMed  Google Scholar 

  • Sola-Penna, M., Vieyra, A. and Meyer-Fernandes, J. R. (1994)Z. Naturforsch. 49C:141–146.

    Google Scholar 

  • Sola-Penna, M., dos Passos Lemos, A., Fávero-Reto, M. P., Meyer-Fernandes, J. R. and Vieyra, A. (1995a)Z. Naturforsch. 50C:114–122.

    Google Scholar 

  • Sola-Penna, M. dos Passos Lemos, A. and Vieyra, A. (1995b)Z. Naturforsch. 50C:(in press).

  • Somero, G. N. (1986)News Physiol. Sci. 1:9–12.

    Google Scholar 

  • Stokes, D. L., Taylor, W. R. and Green, N. M. (1994)FEBS Lett. 346:32–38.

    PubMed  Google Scholar 

  • Vieyra, A. and Caruso-Neves, C. (1993)Brazilian J. Med. Biol. Res. 26:373–381.

    Google Scholar 

  • Vieyra, A., Caruso-Neves, C. and Meyer-Fernandes, J. R. (1989)Methodol. Surv. Biochem. Anal. 19:31–40.

    Google Scholar 

  • Vieyra, A., Caruso-Neves, C. and Meyer-Fernandes, J. R. (1991)J. Biol. Chem. 266:10324–10330.

    PubMed  Google Scholar 

  • Yancey, P. H. and Burg, M. B. (1989)Am. J. Physiol. 257:F602-F607.

    PubMed  Google Scholar 

  • Yancey, P. H. and Burg, M. B. (1990)Am. J. Physiol. 258:R198-R204.

    PubMed  Google Scholar 

  • Yancey, P., Clark, M., Hand, R., Bowlus, R. and Somero, G. (1982)Science 217:1214–1222.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This review is dedicated to Prof. Carlos Chagas Filho, founder of the Institute of Biophysics, on the occasion of its 50th anniversary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vieyra, A. Catalytic and structural modifications of sarcoplasmic reticulum and plasma membrane (Ca2+ + Mg2+)ATPases induced by organic solutes that accumulate in living systems. Biosci Rep 16, 115–127 (1996). https://doi.org/10.1007/BF01206201

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01206201

Key words

Navigation