Skip to main content
Log in

Generalized kinetic equations

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We study the abstract differential equation\(T\frac{{\partial f}}{{\partial x}} + Af = 0\) on a Hilbert space H, which represents a variety of different kinetic equations. T is assumed bounded and self-adjoint on H, and A (unbounded) positive self-adjoint and Fredholm. For partial range boundary conditions and 0≤x<∞, we prove existence and (non-) uniqueness theorems and give representations of the solution. Various examples from neutron transport, radiative transfer of polarized and unpolarized light, and electron transport are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  1. V. A. Ambarzumian: On the problem of diffuse reflection of light. J. Exp. Theor. Phys. 13(9–10), 224–241, 1943 (Russian).

    Google Scholar 

  2. M. D. Arthur, W. Greenberg, P. F. Zweifel: Vlasov theory of plasma oscillations: linear approximation. Physics of Fluids 20, 1296–1301, 1977.

    Google Scholar 

  3. M. S. Baouendi, P. Grisvard: On an evolution equation changing its type. J. Funct. Anal. 2, 353–367, 1968 (French).

    Google Scholar 

  4. R. Beals: On an equation of mixed type from electron scattering theory. J. Math. Anal. Appl. 58, 32–45, 1977.

    Google Scholar 

  5. R. Beals: On an abstract treatment of some forward-backward problems of transport and scattering. J. Funct. Anal. 34, 1–20, 1979.

    Google Scholar 

  6. R. Beals: Partial range completeness and existence of solutions to two-way diffusion equations. J. Math. Phys. 22, 954–960, 1981. Also J. Math. Phys. 24, 1932, 1981.

    Google Scholar 

  7. Yu. M. Berežanskii: Expansion in eigenfunctions of selfadjoint operators. Translations Math. Monographs, Vol. 17, Amer. Math. Soc., Providence, R. I., 1968. Chapter 5. In this reference, rigged Hilbert spaces are called “equipped” Hilbert spaces.

    Google Scholar 

  8. J. Bognár: Indefinite inner product spaces. Springer Verlag, Berlin, 1974.

    Google Scholar 

  9. R. L. Bowden, S. Sancaktar, P. F. Zweifel: Multigroup neutron transport. II. Half-range. J. Math. Phys. 17, 82–86, 1976.

    Google Scholar 

  10. K. M. Case: Plasma oscillations. Ann. Phys. (N.Y.) 7, 349–364, 1959.

    Google Scholar 

  11. K. M. Case: Elementary solutions of the transport equation and their application. Ann. Phys. (N.Y.) 9, 1–23, 1960.

    Google Scholar 

  12. K. M. Case, C. W. Lau: The one-dimensional X-Y model in inhomogeneous magnetic fields. J. Math. Phys. 14, 720–732, 1973.

    Google Scholar 

  13. K. M. Case, P. F. Zweifel: Linear transport theory. Addison-Wesley, Reading, Mass., 1967.

    Google Scholar 

  14. C. Cercignani: Mathematical methods in kinetic theory. Pergamon Press, New York, 1969.

    Google Scholar 

  15. C. Cercignani: Theory and application of the Boltzmann equation. Elsevier, New York, 1975.

    Google Scholar 

  16. S. Chandrasekhar: Radiative transfer. Second revised edition. Dover, New York, 1960.

    Google Scholar 

  17. B. Davison: Neutron transport theory. Oxford University Press, London, 1957.

    Google Scholar 

  18. W. Greenberg: Functional calculus for the symmetric multigroup transport operator. J. Math. Phys. 17, 159–162, 1976.

    Google Scholar 

  19. W. Greenberg, P. F. Zweifel: Functional analytic treatment of the transport equation. Transp. Theor. Stat. Phys. 5, 219–253, 1976.

    Google Scholar 

  20. R. J. Hangelbroek: A functional analytic approach to the linear transport equation, Ph. D. thesis, Rijks Universiteit Groningen, 1973. Abbreviated version: Linear analysis and solution of neutron transport problems. Transp. Theor. Stat. Phys. 5, 1–85, 1976.

  21. R. J. Hangelbroek: Private communication.

  22. R. J. Hangelbroek, C. G. Lekkerkerker: Decompositions of a Hilbert space and factorization of a W-A determinant. SIAM J. Math. Anal. 8, 458–472, 1977.

    Google Scholar 

  23. N. G. van Kampen: On the theory of stationary waves in plasmas. Physica 21, 949–963, 1955.

    Google Scholar 

  24. E. W. Larsen, G. J. Habetler: A functional-analytic derivation of Case's full- and half-range formulas. Comm. on Pure and Appl. Math. 26, 525–537, 1973.

    Google Scholar 

  25. C. G. Lekkerkerker: The linear transport equation. The degenerate case c=1. I. Full-range theory; II. Half-range theory. Proc. Royal Soc. Edinburgh 75A, 259–282 & 283–295, 1975.

    Google Scholar 

  26. M. V. Maslennikov: The Milne problem with anisotropic scattering. Proc. Steklov Inst. Mathematics, Vol. 97, Amer. Math. Soc., Providence, R. I., 1969.

    Google Scholar 

  27. N. J. McCormick, I. Kuščer: Singular eigenfunction expansions in neutron transport theory. Advances in Nuclear Science and Technology, 7, 181–282, 1973.

    Google Scholar 

  28. C. V. M. van der Mee: Semigroup and factorization methods in transport theory. Math. Centre Tract No. 146, Amsterdam, 1981.

  29. T. F. Nonnenmacher, P. F. Zweifel: A Boltzmann equation for phonons and electrons. Phys. Stat. Sol. (b) 96, 653–658, 1979.

    Google Scholar 

  30. M. Reed, B. Simon: Methods of modern mathematical physics. Academic Press, New York, 1972. See Section VIII. 6 in Part I, also Section X. 3 in Part II.

    Google Scholar 

  31. F. Ch. Shure: Boundary value problems in plasma oscillations. Ph. D. thesis, University of Michigan, 1963. University microfilms, Ann Arbor, Michigan, U.S.A.

    Google Scholar 

  32. C. E. Siewert, P. F. Zweifel: An exact solution of equations of radiative transfer for local thermodynamic equilibrium in the non-gray case. Picket Fence approximation. Ann. Phys. (N.Y.) 36, 61–85, 1966.

    Google Scholar 

  33. C. E. Siewert, P. F. Zweifel: Radiative transfer, II. J. Math. Phys. 7, 2092–2102, 1966.

    Google Scholar 

  34. V. V. Sobolev: Light scattering in planetary atmospheres. Pergamon Press, Oxford, 1975.

    Google Scholar 

  35. V. S. Vladimirov: Mathematical problems of one-speed particle transport theory. Trudy Matem. Instituta im. V. A. Steklova, AN SSSR No. 61, 1961 (Russian). Appendix XII. 8.

  36. M. M. R. Williams: The Wiener-Hopf technique: an alternative to the singular eigenfunction method. Advances in Nuclear Science and Technology 7, 283–327, 1973.

    Google Scholar 

  37. M. M. R. Williams: Transport theory in anisotropic media. Math. Proc. Cambridge Phil. Soc., 84, 549–567, 1978.

    Google Scholar 

  38. P. F. Zweifel: Twenty years of transport theory. Transp. Theor. Stat. Phys. 7, 173–190, 1978.

    Google Scholar 

  39. P. F. Zweifel: A generalized transport equation. Transp. Theor. Stat. Phys. 11, 183–198, 1982/83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to K.M. Case on the occasion of his sixtieth birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenberg, W., van der Mee, C.V.M. & Zweifel, P.F. Generalized kinetic equations. Integr equ oper theory 7, 60–95 (1984). https://doi.org/10.1007/BF01204914

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01204914

Keywords

Navigation