Skip to main content
Log in

Clinical and laboratory investigations of the relationship of accommodation and convergence function with refractive error

A literature review

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Studies of the relationship of clinical and laboratory measures of accommodation and convergence function with refractive error are reviewed. There are inconsistencies in results from study to study presumably due, in part, to methodological differences. However, some basic trends can be outlined. In studies in young adults, accommodation in darkness (dark focus), optical reflex accommodation, and proximally induced accommodation are less in myopes than in emmetropes and hyperopes. It also appears that nearpoint esophoria is associated with higher rates of myopia progression in children. Implications for myopia etiology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpern M. Types of movement. In: Davson H, ed. Muscular Mechanisms, Vol. 3, The Eye. New York: Academic Press, 1969: 64–174.

    Google Scholar 

  2. Fry GA. Basic concepts underlying graphical analysis. In: Schor CM, Ciuffreda KJ, eds. Vergence Eye Movements: Basic and Clinical Aspects. Boston: Butterworths, 1983: 403–37.

    Google Scholar 

  3. Morgan MW. The Maddox analysis of vergence. In: Schor CM, Ciuffreda KJ, eds. Vergence Eye Movements: Basic and Clinical Aspects. Boston: Butterworth, 1983: 15–21.

    Google Scholar 

  4. Hofstetter HW. Graphical analysis. In: Schor CM, Ciuffreda KJ, eds. Vergence Eye Movements: Basic and Clinical Aspects. Boston: Butterworths, 1983: 439–64.

    Google Scholar 

  5. Goss DA. Ocular Accommodation, Convergence, and Fixation Disparity: A Manual of Clinical Analysis. New York: Professional Press, 1986.

    Google Scholar 

  6. Ciuffreda KJ, Kenyon RV. Accommodative vergence and accommodation in normals, amblyopes, and strabismics. In: Schor CM, Ciuffreda KJ, eds. Vergence Eye Movements: Basic and Clinical Aspects. Boston: Butterworths, 1983: 101–73.

    Google Scholar 

  7. Wick BC. Horizontal deviations. In: Amos JF, ed. Diagnosis and Management in Vision Care. Boston: Butterworths, 1987; 461–510.

    Google Scholar 

  8. Hofstetter HW. The relationship of proximal convergence to fusional and accommodative convergence. Am J Optom Arch Am Acad Optom 1951; 28: 300–8.

    PubMed  Google Scholar 

  9. Heath GG. Components of accommodation. Am J Optom Arch Am Acad Optom 1956; 33: 569–79.

    PubMed  Google Scholar 

  10. Alpern M. Accommodation. In: Davson H, ed. Muscular Mechanisms, Vol. 3, The Eye. New York: Academic Press, 1969: 217–54.

    Google Scholar 

  11. Schor CM. Fixation disparity and vergence adaptation. In: Schor CM, Ciuffreda KJ, eds. Vergence Eye Movements: Basic and Clinical Aspects. Boston: Butterworths, 1983: 190–3.

    Google Scholar 

  12. Hokoda SC, Ciuffreda KJ. Theoretical and clinical importance of proximal vergence and accommodation. In: Schor CM, Ciuffreda KJ, eds. Vergence Eye Movements: Basic and Clinical Aspects. Boston: Butterworths, 1983: 75–97.

    Google Scholar 

  13. Ward PA. A review of some factors affecting accommodation. Clin Exp Optom 1987; 70: 23–32.

    Google Scholar 

  14. Leibowitz HW, Owens DA. Anomalous myopias and the intermediate dark focus of accommodation. Science 1975; 189: 646–8.

    PubMed  Google Scholar 

  15. Leibowitz HW, Owens DA. New evidence for the intermediate position of relaxed accommodation. Doc Ophthalmol 1975; 46: 133–47.

    Google Scholar 

  16. Owens DA. Near work, accommodative tonus, and myopia. In: Grosvenor T, Flom MC, eds. Refractive Anomalies: Research and Clinical Applications. Boston: Butterworth-Heinemann, 1991: 318–44.

    Google Scholar 

  17. Goss DA. Clinical accommodation testing. Curr Opin Ophthalmol 1992; 3: 78–82.

    PubMed  Google Scholar 

  18. Sheard C. Dynamic Ocular Tests. Columbus, OH: Lawrence Press, 1917.

    Google Scholar 

  19. Sheard C. Dynamic Skiametry and Methods of Testing the Accommodation and Convergence of the Eyes. Chicago: Cleveland Press, 1920.

    Google Scholar 

  20. Cross AJ. Dynamic Skiametry in Theory and Practice. New York: Cross Optical Co., 1911.

    Google Scholar 

  21. Tait EF. A quantitative system of dynamic skiametry. Am J Optom Arch Am Acad Optom 1953; 30: 113–29.

    PubMed  Google Scholar 

  22. Borish IM. Clinical Refraction, 3rd ed. Chicago: Professional Press, 1970: 141–8, 697–713.

    Google Scholar 

  23. Michaels DD. Visual Optics and Refraction: A Clinical Approach, 2nd ed. St. Louis: Mosby, 1980.

    Google Scholar 

  24. Locke LC, Somers W. A comparison study of dynamic retinoscopy techniques. Optom Vis Sci 1989; 66: 540–5.

    PubMed  Google Scholar 

  25. Carlson NB, Kurtz D, Heath DA, Hines C. Clinical Procedures for Ocular Examination. Norwalk, CT: Appleton & Lange, 1990.

    Google Scholar 

  26. Rouse MW, London R, Allen DC. An evaluation of the monocular estimate method (MEM) of dynamic retinoscopy. Am J Optom Physiol Opt 1982; 59: 234–9.

    PubMed  Google Scholar 

  27. Rouse MW, Hutter RF, Shiftlett R. A normative study of the accommodative lag in elementary school children. Am J Optom Physiol Opt 1984; 61: 693–7.

    PubMed  Google Scholar 

  28. Jackson TW, Goss DA. Variation and correlation of clinical tests of accommodative function in a sample of school age children. J Am Optom Assoc 1991; 62: 857–66.

    PubMed  Google Scholar 

  29. Fry GA. Significance of fused cross cylinder test. Optom Weekly 1940; 31: 16–9.

    Google Scholar 

  30. Goodson RA, Afanador AJ. The accommodative response to the near point crossed cylinder test. Optom Weekly 65: 1138–40.

  31. Hoffman LG, Rouse M. Referral recommendations for binocular function and/or developmental perceptual deficiencies. J Am Optom Assoc 1980; 51: 119–25.

    PubMed  Google Scholar 

  32. Daum KM. Accommodative facility. In Eskridge JB, Amos JF, Bartlett JD, eds. Clinical Procedures in Optometry. Philadelphia: Lippincott, 1991: 687–97.

    Google Scholar 

  33. Liu JS, Lee M, Jang J, Ciuffreda KJ, Wong JH, Grisham D, Stark L. Objective assessment of accommodative orthoptics, I: Dynamic insufficiency. Am J Optom Physiol Opt 1979; 56: 285–94.

    PubMed  Google Scholar 

  34. Haynes HM. The distance rock test-a preliminary report. J Am Optom Assoc 1979; 50: 707–13.

    PubMed  Google Scholar 

  35. Garzia RD, Richman JE. Accommodative facility: Study of young adults. J Am Optom Assoc 1982; 53: 821–5.

    PubMed  Google Scholar 

  36. Bobier WR, Sivak JG. Orthoptic treatment of subjects showing slow accommodative responses. Am J Optom Physiol Opt 1983; 60: 678–87.

    PubMed  Google Scholar 

  37. Zellers TA, Alpert TL, Rouse MW. A review of the literature and normative study of accommodative facility: J Am Optom Assoc 1984; 55: 31–7.

    PubMed  Google Scholar 

  38. Levine S, Ciuffreda KJ, Selenow A, Flax N. Clinical assessment of accommodative facility in symptomatic and asymptomatic individuals: J Am Optom Assoc 1985; 56: 286–90.

    PubMed  Google Scholar 

  39. Cooper J. Accommodative dysfunction. In Amos JF, ed. Diagnosis and Management in vision Care. Boston: Butterworths, 1987: 431–59.

    Google Scholar 

  40. Scheiman M, Herzberg H, Frantz K, Margolies M. Normative study of accommodative facility in elementary schoolchildren. Am J Optom Physiol Opt 1988; 65: 127–34.

    PubMed  Google Scholar 

  41. Siderov J, Johnston AW. The importance of test parameters in the clinical assessment of accommodative facility. Optom Vis Sci 1990; 67: 551–7.

    PubMed  Google Scholar 

  42. Donders FC. On the Anomalies of Accommodation and Refraction of the Eye. London (UK): The New Sydenham Society, 1865.

    Google Scholar 

  43. Hofstetter HW. The zone of clear single binocular vision. Am J Optom Arch Am Acad Optom 1945; 22: 301–33, 361–83.

    Google Scholar 

  44. Grosvenor TP. Primary Care Optometry, 2nd ed. New York: Professional Press, 1989.

    Google Scholar 

  45. Morgan MW. The clinical aspects of accommodation and convergence. Am J Optom Arch Am Acad Optom 1944; 21: 301–14.

    Google Scholar 

  46. Shepard CF. The most probable expected. Optom Weekly 1941; 32: 538–41.

    Google Scholar 

  47. Wold RM. The spectacle amplitude of accommodation of children aged six to ten. Am J Optom Arch Am Acad Optom 1967; 44: 642–64.

    PubMed  Google Scholar 

  48. Morgan MW. Accommodation and its relationship to convergence. Am J Optom Arch Am Acad Optom 1944; 21: 183–95.

    Google Scholar 

  49. Ciuffreda KJ. Accommodation and its anomalies. In: Charman WN, ed. Visual Optics and Instrumentation. Boca Raton: CRC Press, 1991; 231–79.

    Google Scholar 

  50. Miller RJ. Temporal stability of the dark focus of accommodation. Am J Optom Physiol Opt 1978; 55: 447–50.

    PubMed  Google Scholar 

  51. Mershon DH, Amerson JR. Stability of measures of the dark focus of accommodation. Invest Ophthalmol Vis Sci 1980; 19: 217–21.

    PubMed  Google Scholar 

  52. Smith G. The accommodative resting states, instrument accommodation and their measurement. Optica Acta 1983; 30: 347–59.

    Google Scholar 

  53. Simonelli NM. The dark focus of the human eye and its relationship to age and visual defect. Human Factors 1983; 25: 85–92.

    PubMed  Google Scholar 

  54. Gilmartin B, Hogan RE. The relationship between tonic accommodation and ciliary muscle innervation. Invest Ophthalmol Vis Sci 1985; 26: 1024–8.

    PubMed  Google Scholar 

  55. Bullimore MA, Gilmartin B, Hogan RE. Objective and subjective measurement of tonic accommodation. Ophthal Physiol Opt 1986; 6: 57–62.

    Google Scholar 

  56. Johnson CA, Post RB, Tseutaki TK. Short term variability of resting focus of accommodation. Ophthal Physiol Opt 1984; 4: 319–25.

    Google Scholar 

  57. Mohindra I. A technique for infant vision examination. Am J Optom Physiol Opt 1975; 52: 867–70.

    PubMed  Google Scholar 

  58. Mohindra I. A non-cycloplegic refraction technique for infants and young children. J Am Optom Assoc 1977; 48: 518–22.

    PubMed  Google Scholar 

  59. Mohindra I. Comparison of ‘near retinoscopy’ and subjective refraction in adults. Am J Optom Physiol Opt 1977; 54: 319–22.

    PubMed  Google Scholar 

  60. Mohindra l, Molinari JF. Near retinoscopy and cycloplegic retinoscopy in early primary grade schoolchildren. Am J Optom Physiol Opt 1979; 56: 34–8.

    PubMed  Google Scholar 

  61. Borghi RA, Rouse MW. Comparison of refraction obtained by ‘near retinoscopy’ and retinoscopy under cycloplegia. Am J Optom Physiol Opt 1985; 62: 169–72.

    PubMed  Google Scholar 

  62. Wesson MD, Mann KR, Bray NW. A comparison of cycloplegic refraction to the near retinoscopy technique for refractive error determination. J Am Optom Assoc 1990; 61: 680–4.

    PubMed  Google Scholar 

  63. Westheimer G. The visual world of the new contact lens wearer. J Am Optom Assoc 1962; 34: 135–8.

    Google Scholar 

  64. Gawron VJ. Differences among myopes, emmetropes, and hyperopes. Am J Optom Physiol Opt 1981; 58: 753–60.

    PubMed  Google Scholar 

  65. Fledelius HC. Accommodation and juvenile myopia-some findings in Danish material around the age of 18 years. In: Fledelius HC, Alsbirk PH, Goldschmidt E, eds. Third International Conference on Myopia. Doc Ophthalmol Proc Ser (The Hague: Junk) 1981; 8: 103–8.

    Google Scholar 

  66. McBrien NA, Millodot M. Amplitude of accommodation and refractive error. Invest Ophthalmol Vis Sci 1986; 27: 1187–90.

    PubMed  Google Scholar 

  67. Mäntyjärvi MI. Accommodation in hyperopic and myopic school children. J Ped Ophthalmol Strab 1987; 24: 37–41.

    Google Scholar 

  68. Zhai HF, Guang ZS. Observation of accommodation in juvenile myopia. Eye Science (China) 1988; 4: 228–31.

    Google Scholar 

  69. Duang CM. The relation among ametropia, age and amplitude of accommodation. Chinese J Ophthalmol 1985; 21: 216–21.

    Google Scholar 

  70. Di BZ. The study of phoria, accommodative amplitude and AC/A ratio in juvenile myopes. Ocular Refractive Journal (China) 1984; 2: 188–99.

    Google Scholar 

  71. Mäntyjärvi M, Nousiainen I. Refraction and accommodation in diabetic school children. Acta Ophthalmologica 1988; 66: 267–71.

    PubMed  Google Scholar 

  72. Ramsdale C. Monocular and binocular accommodation. Ophthalmic Optician 1979; 19: 606–2.

    Google Scholar 

  73. Ramsdale C. The effect of ametropia on the accommodative response. Acta Ophthalmol 1985; 63: 167–74.

    Google Scholar 

  74. McBrien NA, Millodot M. The effect of refractive error on the accommodative response gradient. Ophthal Physiol Opt 1986; 6: 145–9.

    Google Scholar 

  75. Bullimore MA, Gilmartin B, Royston JM. Steady-state accommodation and ocular biometry in late-onset myopia. Doc Ophthalmol 1992; 80: 143–55.

    PubMed  Google Scholar 

  76. Gwiazda J, Thorn F, Bauer J, Held R. Myopic children show insufficient accommodative response to blur. Invest Ophthalmol Vis Sci 1993; 34: 690–4.

    PubMed  Google Scholar 

  77. Rosenfeld M, Gilmartin B. Effect of target proximity on the open-loop accommodative response. Optom Vis Sci 1990; 67: 74–9.

    PubMed  Google Scholar 

  78. Suzumura A. Accommodation in myopia. In: Sato T, Yamaji R, eds. Proceedings of the Second International Conference on myopia. Yokohama-Shi: Sato Eye Clinic, 1981; 55–67.

    Google Scholar 

  79. Duke-Elder S, Abrams D. Ophthalmic Optics and Refraction, Vol. V. In: Duke-Elder S, ed. System of Ophthalmology. St. Louis: Mosby, 1970: 469–74.

    Google Scholar 

  80. Stenson SM, Raskind RH. Pseudomyopia: etiology, mechanisms and therapy. J Pediatr Ophthalmol 1970; 7: 110–5.

    Google Scholar 

  81. Goss DA, Eskridge JB. Myopia. In: Amos JF, ed. Diagnosis and Management in Vision Care. Boston: Butterworths, 1987: 121–71.

    Google Scholar 

  82. Maddock RJ, Millodot M, Leat S, Johnson CA. Accommodation response and refractive error. Invest Ophthalmol Vis Sci 1981; 20: 387–91.

    PubMed  Google Scholar 

  83. Charman WN. The accommodative resting point and refractive error. Ophthal Opt 1982; 22: 469–73.

    Google Scholar 

  84. McBrien NA, Millodot M. The relationship between tonic accommodation and refractive error. Invest Ophthalmol Vis Sci 1987; 28: 997–1001.

    PubMed  Google Scholar 

  85. Bullimore MA, Boyd T, Mather HE, Gilmartin B. Near retinoscopy and refractive error. Clin Exp Optom 1988; 71: 114–8.

    Google Scholar 

  86. Rosner J, Rosner J. Relation between clinically measured tonic accommodation and refractive status in 6- to 14-year-old children. Optom Vis Sci 1989; 66: 436–9.

    PubMed  Google Scholar 

  87. Miwa T. Instrument myopia and the resting state of accommodation. Optom Vis Sci 1992; 68: 55–9.

    Google Scholar 

  88. Morse SE. Accommodative and vergence adaptation in age-of onset refractive error groups. Ph.D. Thesis, University of Houston, 1991.

  89. Ebenholtz SM. Accommodative hysteresis: A precursor for induced myopia? Invest Ophthalmol Vis Sci 1983; 24: 513–15.

    PubMed  Google Scholar 

  90. Ebenholtz SM. Accommodative hysteresis: Relation to resting focus. Am J Optom Physiol Opt 1985; 62: 755–62.

    PubMed  Google Scholar 

  91. Ebenholtz SM. Long-term endurance of adaptive shifts in tonic accommodation. Ophthal Physiol Opt 1988; 8: 427–31.

    Google Scholar 

  92. Ebenholtz SM. Accommodative hysteresis-fundamental asymmetry in decay rate after near and far focusing. Invest Ophthalmol Vis Sci 1991; 32: 148–53.

    PubMed  Google Scholar 

  93. Ebenholtz SM, Zander PAL. Accommodative hysteresis: Influence on closed loop measures offar point and near point. Invest Ophthalmol Vis Sci 1987; 28: 1246–9.

    PubMed  Google Scholar 

  94. McBrien NA, Millodot M. Differences in adaptation of tonic accommodation with refractive state. Invest Ophthalmol Vis Sci 1988; 29: 460–9.

    PubMed  Google Scholar 

  95. Fisher SK, Ciuffreda KJ, Levine S. Tonic accommodation, accommodative hysteresis, and refractive error. Am J Optom Physiol Opt 1987; 64: 799–809.

    PubMed  Google Scholar 

  96. Rosenfeld M, Gilmartin B. Accommodative adaptation induced by sustained disparity-vergence. Am J Optom Physiol Opt 1988; 65: 118–26.

    PubMed  Google Scholar 

  97. Gilmartin B, Bullimore M. Adaptation of tonic accommodation to sustained visual tasks in emmetropia and late-onset myopia. Optom Vis Sci 1991; 68: 22–6.

    PubMed  Google Scholar 

  98. Rosenfeld M, Gilmartin B. Temporal aspects of accommodative adaptation. Optom Vis Sci 1989; 66: 229–34.

    PubMed  Google Scholar 

  99. Bullimore MA, Gilmartin B. Aspects of tonic accommodation in emmetropia and late-onset myopia. Am J Optom Physiol Opt 1987; 64: 495–503.

    Google Scholar 

  100. Rosenfeld M, Gilmartin B. Disparity-induced accommodation in late-onset myopia. Ophthal Physiol Opt 1988; 8: 353–5.

    Google Scholar 

  101. Rosenfeld M, Gilmartin B. Synkinesis of accommodation and vergence in late-onset myopia. Am J Optom Physiol Opt 1987; 64: 929–37.

    PubMed  Google Scholar 

  102. Rosenfeld M, Gilmartin B. Assessment of the CA/C ratio in a myopic population. Am J Optom Physiol Opt 1988; 65: 168–73.

    PubMed  Google Scholar 

  103. North RV, Sethi B, Owen K. Adaptation ability of subjects with different refractive errors. Optom Vis Sci 1989; 66: 296–9.

    PubMed  Google Scholar 

  104. Manas L. The inconstancy of the ACA ratio. Am J Optom Arch Am Acad Optom 1955; 32: 304–15.

    PubMed  Google Scholar 

  105. Ogle KN, Martens TG. On the accommodative convergence and the proximal convergence. Arch Ophthalmol 1957; 57: 702–15.

    Google Scholar 

  106. Rosenfeld M, Gilmartin B. Effect of a near vision task on the response AC/A of a myopic population. Ophthal Physiol Opt 1987; 7: 225–33.

    Google Scholar 

  107. Rosenfeld M, Gilmartin B. Beta-adrenergic receptor antagonism in late-onset myopia. Ophthal Physiol Opt 1987; 7: 359–64.

    Google Scholar 

  108. Avetisov ES. Unterlagen zur Entstehungstheorie der Myopie. 1. Mitteilung. Die Rolle der Akkommodation in der Entstehung der Myopie. Klin Mbl Augenheilk 1979; 175: 735–40.

    PubMed  Google Scholar 

  109. Avetisov ES. Unterlagen zur Entstehungstheorie der Myopie. 4. Mitteilung. Entstehung der Myopie und einige neue Möglichkeiten zu ihrer Prophylaxe und Therapie. Klin Mbl Augenheilk 1980; 175: 911–4.

    Google Scholar 

  110. Birnbaum MH. Management of the low myopia pediatric patient. J Am Optom Assoc 1979; 50: 1281–9.

    PubMed  Google Scholar 

  111. Birnbaum MH. Clinical management of myopia. Am J Optom Physiol Opt 1981; 58: 554–9.

    PubMed  Google Scholar 

  112. Goss DA. Clinical accommodation and heterophoria findings preceding juvenile onset of myopia. Optom Vis Sci 1991; 68: 110–6.

    PubMed  Google Scholar 

  113. Hofstetter HW. Some interrelationships of age, refraction, and rate of refractive change. Am J Optom Arch Am Acad Optom 1954; 31: 161–9.

    PubMed  Google Scholar 

  114. Goss DA. Childhood myopia. In: Grosvenor T, Flom MC, eds. Refractive Anomalies-Research and Clinical Applications. Boston utterworth-Heinemann, 1991: 81–131.

  115. Roberts WL, Banford RD. Evaluation of bifocal correction technique in juvenile myopia. Optom Weekly 1967; 58(38): 25–31; 58(39): 21–30; 58(40): 23–28; 58(41): 27–34; 58(43): 19–26.

    Google Scholar 

  116. Goss DA. Effect of bifocal lenses on the rate of childhood myopia progression. Am J Optom Physiol Opt 1986; 63: 135–41.

    PubMed  Google Scholar 

  117. Grosvenor T, Perrigin, DM, Perrigin J, Maslovitz B. Houston myopia control study: A randomized clinical trial, II: Final report by the patient care team. Am J Optom Physiol Opt 1987; 64: 482–98.

    PubMed  Google Scholar 

  118. Goss DA, Grosvenor T. Rates of childhood myopia progression with bifocals as a function of nearpoint phoria: Consistency of three studies. Optom Vis Sci 1990; 67: 637–40.

    PubMed  Google Scholar 

  119. Jensen H. Myopia progression in young school children-a prospective study of myopia progression and the effect of a trial with bifocal lenses and beta blocker eye drops. Acta Ophthalmol 1991; 69:supplement 200.

    Google Scholar 

  120. Goss DA. Variables related to the rate of childhood myopia progression. Optom Vis Sci 1991; 67: 631–6.

    Google Scholar 

  121. van Alphen GWHM. On emmetropia and ametropia. Ophthalmologica 1961; 142: Supplementum.

  122. Goldschmidt E. On the etiology of myopia: an epidemiological study. Acta Ophthalmol 1968: Supplement 98.

  123. Garner LF. Mechanisms of accommodation and refractive error. Ophthal Physiol Opt 1983; 3: 287–93.

    Google Scholar 

  124. McBrien NA, Barnes DA. A review and evaluation of theories of refractive error development. Ophthal Physiol Opt 1984; 4: 201–13.

    Google Scholar 

  125. Birnbaum MH. Nearpoint visual stress: a physiological model. J Am Optom Assoc 1984; 55: 825–35.

    PubMed  Google Scholar 

  126. Birnbaum MH. Nearpoint visual stress: Clinical implications. J Am Optom Assoc 1985; 56: 480–90.

    PubMed  Google Scholar 

  127. Curtin BJ. The Myopias-Basic Science and Clinical Management. Philadelphia: Harper & Row, 1985: 61–151.

    Google Scholar 

  128. Gilmartin B, Hogan RE. The role of the sympathetic nervous system in ocular accommodation and ametropia. Ophthal Physiol Opt 1985; 5: 91–3.

    Google Scholar 

  129. Bock GR, Widdows K, eds. Myopia and the Control of Eye Growth (Ciba Foundation Symposium 155). Chichester, UK: John Wiley & Sons, 1990.

    Google Scholar 

  130. Grosvenor T, Flom MC, eds. Refractive Anomalies-Research and Clinical Applications. Boston: Butterworth-Heinemann, 1991.

    Google Scholar 

  131. Raviola E, Wiesel TN. An animal model of myopia. New Eng J Med 1985; 312: 1609–15.

    PubMed  Google Scholar 

  132. Goss DA. Retinal image-mediated ocular growth as a possible etiological factor in juvenile-onset myopia. In: Vision Science Symposium / A Tribute to Gordon G. Heath. Bloomington: Indiana University, 1988; 165–83.

    Google Scholar 

  133. Wallman J. Introduction. In: Bock GR, Widdows K, eds. Myopia and the Control of Eye Growth (Ciba Foundation Symposium 155). Chichester, UK: John Wiley & Sons, 1990: 1–4.

    Google Scholar 

  134. Raviola E, Wiesel TN. Effect of dark-rearing on experimental myopia in monkeys. Invest Ophthalmol Vis Sci 1978; 17: 485–8.

    PubMed  Google Scholar 

  135. Wiesel TN, Raviola E. Increase in axial length of the macaque monkey eye after corneal opacification. Invest Ophthalmol Vis Sci 1979; 18: 1232–6.

    PubMed  Google Scholar 

  136. Wallman J, Adams JI, Trachtman JN. The eyes of young chickens grow toward emmetropia. Invest Ophthalmol Vis Sci 1981; 20: 557–61.

    PubMed  Google Scholar 

  137. Wallman J, Gottlieb N, Rajaram V, Fugate-Wentzek LA. Local retinal regions control local eye growth and myopia. Science 1987; 23: 73–7.

    Google Scholar 

  138. Goss DA, Criswell MH. Myopia development in experimental animals-a literature review. Am J Optom Physiol Opt 1981; 58: 859–69.

    PubMed  Google Scholar 

  139. Criswell MH, Goss DA. Myopia development in nonhuman primates-a literature review. Am J Optom Physiol Opt 1983; 60: 250–68.

    PubMed  Google Scholar 

  140. Yinon U. Myopia induction in animals following alteration of the visual input during development: a review. Curr Eye Res 1984; 3: 677–90.

    PubMed  Google Scholar 

  141. Smith EL III, Harwerth RS, Crawford MLJ, von Noorden GK. Observations on the effects of form deprivation on the refractive status of the monkey. Invest Ophthalmol Vis Sci 1987; 28: 1236–45.

    PubMed  Google Scholar 

  142. Wallman J, Adams JI. Developmental aspects of experimental myopia in chicks: Susceptibility recovery and relation to emmetropization. Vision Res 1987; 27: 1139–63.

    PubMed  Google Scholar 

  143. Seltner RL, Sivak JG. Experimentally induced myopia in chicks. Can J Optom 1988; 50: 190–3.

    Google Scholar 

  144. Holden AL, Hodos W, Hayes BP, Fitzke FW. Myopia: Induced, normal and clinical. Eye 1988; 2: S242-S256.

    PubMed  Google Scholar 

  145. Sivak JG, Bame DL, Callender MG, Doughty MJ, Seltner RL, West JA. Optical causes of experimental myopia. In: Bock GR, Widdows K, eds. Myopia and the Control of Eye Growth (Ciba Foundation Symposium 155). Chichester, UK: John Wiley & Sons, 1990: 160–72.

    Google Scholar 

  146. Norton TT. Experimental myopia in tree shrews. In: Bock GR, Widdows K, eds. Myopia and the Control of Eye Growth (Ciba Foundation Symposium 155). Chichester, UK: John Wiley & Sons, 1990: 178–99.

    Google Scholar 

  147. Troilo D. Experimental studies of emmetropization in the chick. In: Bock GR, Widdows K, eds. Myopia and the control of Eye Growth (Ciba Foundation Symposium 155). Chichester, UK: John Wiley & Sons, 1990: 89–102.

    Google Scholar 

  148. Hodos W, Holden AL, Fitzke FW, Hayes BP, Low JC. Normal and induced myopia in birds: Models for human vision. In: Grosvenor T, Flom MC, eds. Refractive Anomalies: Research and Clinical Implications. Boston: Butterworth-Heinemann, 1991: 235–45.

    Google Scholar 

  149. Schaeffel F, Glasser A, Howland HC. Accommodation, refractive error, and eye growth in chickens. Vision Res 1988; 28: 639–57.

    PubMed  Google Scholar 

  150. Schaeffel F, Troilo D, Wallman J, Howland HC. Developing eyes that lack accommodation grow to compensate for imposed defocus. Vis Neurosci 1990; 4: 177–83.

    PubMed  Google Scholar 

  151. Schaeffel F, Howland HC. Properties of the feedback loops controlling eye growth and refractive state in the chicken. Vision Res 1991; 31: 717–34.

    PubMed  Google Scholar 

  152. Irving EL, Callender MG, Sivak JG. Inducing myopia, hyperopia, and astigmatism. Optom Vis Sci 1991; 68: 364–8.

    PubMed  Google Scholar 

  153. Sorsby A, Benjamin B, Sheridan M. Refraction and its Components during the Growth of the Eye from the Age of three. Medical Research Council Special Report Series No. 301. London: HMSO, 1961.

    Google Scholar 

  154. Tokoro T, Kabe S. Relation between changes in the ocular refraction and refractive components and development of myopia. Acta Soc Ophthalmol Jpn 1964; 68: 1240–53.

    Google Scholar 

  155. Tokoro T, Suzuki K. Changes in ocular refractive components and development of myopia during seven years. Jpn J Ophthalmol 1968; 13: 27–34.

    Google Scholar 

  156. Sorsby A, Leary G. A Longitudinal Study of Refraction and its Components During Growth. Medical Research Council Special Report Series No. 309. London: HMSO, 1970.

    Google Scholar 

  157. Fledelius HC. Changes in refraction and eye size during adolescence - with special reference to the influence of low birth weight. In: Fledelius HC, Alsbirk PH, Gold-schmidt E, eds. Third International Conference on Myopia. Doc Ophthalmol Proc Ser (The Hague: Junk) 1981; 28: 63–9.

    Google Scholar 

  158. Fledelius HC. Ophthalmic changes from age of 10 to 18 years. A longitudinal study of sequels to low birth weight, IV: Ultrasound oculometry of vitreous and axial length. Acta Ophthalmol 1982; 60: 403–11.

    Google Scholar 

  159. Goss DA, Cox VD, Hernn-Lawson GA, Nielsen ED, Dolton WA. Refractive error, axial length, and height as a function of age in young myopes. Optom Vis Sci 1990; 67: 332–8.

    PubMed  Google Scholar 

  160. Baldwin WR. A review of statistical studies of relations between myopia and ethnic, behavioral, and physiological characteristics. Am J Optom Physiol Opt 1981; 58: 516–27.

    PubMed  Google Scholar 

  161. Angle J, Wissman DA. Age, reading and myopia. Am J Optom Physiol Opt 1978; 55: 302–8.

    PubMed  Google Scholar 

  162. Richler A, Bear JC. Refraction, nearwork, and education: A population study in Newfoundland. Acta Ophthalmol 1980; 58: 468–78.

    Google Scholar 

  163. Bear JC, Richler A, Burke G. Nearwork and familial resemblances in ocular refraction: A population study in Newfoundland. Clin Genet 1981; 19: 462–72.

    PubMed  Google Scholar 

  164. Sperduto RD, Seigel D, Roberts J, Rowland M. Prevalence of myopia in the United States. Arch Ophthalmol 1983; 101: 405–7.

    PubMed  Google Scholar 

  165. Bear JC. Epidemiology and genetics of refractive anomalies. In: Grosvenor T, Flom MC, eds. Refractive Anomalies: Research and Clinical Applications. Boston: Butterworth-Heinemann, 1983; 57–80.

    Google Scholar 

  166. Parssinen O, Hemminki E, Klemetti A. Effect of spectacle use and accommodation on myopic progression: Final results of a three-year randomized clinical trial among school children. Br J Ophthalmol 1989; 73: 547–51.

    PubMed  Google Scholar 

  167. Rabin J, van Sluyters RC, Malach R. Emmetropization: A vision-dependent phenomenon. Invest Ophthalmol Vis Sci 1978; 20: 561–4.

    Google Scholar 

  168. Troilo D, Wallman J. The regulation of eye growth and refractive state: An experimental study of emmetropization. Vision Res 1991; 31: 1237–50.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goss, D.A., Zhai, H. Clinical and laboratory investigations of the relationship of accommodation and convergence function with refractive error. Doc Ophthalmol 86, 349–380 (1994). https://doi.org/10.1007/BF01204595

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01204595

Key words

Navigation