Skip to main content
Log in

Predicting properties of molecules using graph invariants

  • Chemical Properties and QSAR
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Topological indices (TIs) have been used to study structure-activity relationships (SAR) with respect to the physical, chemical, and biological properties of congeneric sets of molecules. Since there are many TIs and many are correlated, it is important that we identify redundancies and extract useful information from TIs into a smaller number of parameters. Moreover, it is important to determine if TIs, or parameters derived from TIs, can be used for global SAR models of diverse sets of chemicals. We calculated seventy-one TIs for three groups of molecules of increasing complexity and diversity: (a) 74 alkanes, (b) 29 alkylbenzenes, and (c) 37 polycyclic aromatic hydrocarbons (PAHs). Principal components analysis (PCA) revealed that a few principal components (PCs) could extract most of the information encoded by the seventy-one TIs. The structural basis of the first few PCs could be derived from their pattern of correlation with individual TIs. For the three sets of molecules, viz. alkanes, alkylbenzenes and PAHs, PCs were able to predict the boiling points reasonably well. Also, for the combined set of 140 chemicals consisting of the alkanes, alkylbenzenes and PAHs, the derived PCs were not as effective in predicting properties as in the case of individual classes of compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.E. Needham, I.C. Wei and P.G. Seybold, J. Amer. Chem. Soc. 110 (1988)4186.

    Google Scholar 

  2. D.H. Rouvray and W. Tatong, Z. Naturforsch. 41a (1986)1238.

    Google Scholar 

  3. Y. Gao and H. Hosoya, Bull. Chem. Soc. Japan 61 (1988)3093.

    Google Scholar 

  4. M. Randić, J. Amer. Chem. Soc. 97 (1975)6609.

    Google Scholar 

  5. O. Mekenyan, S. Dimitrov and D. Bonchev, Eur. Polymer J. 19 (1983)1185.

    Google Scholar 

  6. S.C. Basak, G.J. Niemi and G.D. Veith, in:Computational Chemical Graph Theory, ed. D.H. Rouvray (Nova Publ., New York, 1990), in press.

    Google Scholar 

  7. S.K. Ray, S.C. Basak, C. Raychaudhury, A.B. Roy and J.J. Ghosh, Ind. J. Chem. 20B (1981)894.

    Google Scholar 

  8. S.K. Ray, S.C. Basak, C. Raychaudhury, A.B. Roy and J.J. Ghosh, Arzneim. Forsch. 32 (1982)322.

    Google Scholar 

  9. V.R. Magnuson, D.K. Harriss and S.C. Basak, in:Chemical Applications of Topology and Graph Theory, ed. R.B. King (Elsevier, Amsterdam, 1983), pp. 178.

    Google Scholar 

  10. R.J. Baker, W.E. Acree and C.-C. Tsai, Quant. Struct.-Act. Relat. 3 (1984)10.

    Google Scholar 

  11. O. Mekenyan, D. Bonchev and N. Trinajstić, Int. J. Quant. Chem. 18 (1980)369.

    Google Scholar 

  12. L.B. Kier and L.H. Hall,Molecular Connectivity in Structure-Activity Analysis (research Studies Press, Letchworth, Hertfordshire, UK, 1986).

    Google Scholar 

  13. N. Trinajstić,Chemical Graph Theory, Vols. 1 and 2 (CRC Press, Boca Raton, FL, 1983).

    Google Scholar 

  14. J.W. Kennedy and L.V. Quintas,Applications of Graphs in Chemistry and Physics (North-Holland, Amsterdam, 1988).

    Google Scholar 

  15. M. Randić, Int. J. Quant. Chem. Quant. Biol. Symp. 11 (1984)137.

    Google Scholar 

  16. A. Sabljic and N. Trinajstić, Acta Pharm. Yugosl. 31 (1981)189.

    Google Scholar 

  17. S.C. Basak, D.P. Gieschen, D.K. Harriss and V.R. Magnuson, J. Pharm. Sci. 72 (1983)934.

    Google Scholar 

  18. S.C. Basak, L.J. Monsrud, M.E. Rosen, C.M. Frane and V.R. Magnuson, Acta Pharm. Yugosl. 36 (1986)81.

    Google Scholar 

  19. S.C. Basak, Med. Sci. Res. 15 (1987)605.

    Google Scholar 

  20. S.C. Basak, Med. Sci. Res. 16 (1988)281.

    Google Scholar 

  21. N. Trinajstić, M. Randić, and D.J. Klein, Acta Pharm. Yugosl. 36 (1986)267.

    Google Scholar 

  22. F. Harary,Graph Theory (Addison-Wesley, Reading, MA, 1969).

    Google Scholar 

  23. F. Harary, J. Graph Theory 10 (1986)iii.

    Google Scholar 

  24. A.T. Balaban, J. Chem. Inf. Comput. Sci. 25 (1985)334.

    Google Scholar 

  25. L. Spialter, J. Amer. Chem. Soc. 85 (1963)2012.

    Google Scholar 

  26. L. Spialter, J. Chem. Doc. 4 (1964)261.

    Google Scholar 

  27. L. Spialter, J. Chem. Doc. 4 (1964)269.

    Google Scholar 

  28. D. Bonchev and N. Trinajstić, J. Chem. Phys. 67 (1977)4517.

    Google Scholar 

  29. S.C. Basak, A.B. Roy and J.J. Ghosh, in:Proc. 2nd Int. Conf. on Mathematical Modelling, ed. X.J.R. Avula, R. Bellman, Y.L. Luke and A.K. Rigler (University of Missouri-Rolla, Rolla, MO, 1980), Vol. 2, p. 851.

    Google Scholar 

  30. R. Sarkar, A.B. Roy and P.K. Sarkar, Math. Biosci. 39 (1978)299.

    Google Scholar 

  31. A.B. Roy, S.C. Basak, D.K. Harriss and V.R. Magnuson, in: Mathematical Modelling in Science and Technology, ed. X.J.R. Avula, R.E. Kalman, A.I. Liapis and E.Y. Rodin (Pergamon, New York, 1984), p. 745.

    Google Scholar 

  32. G.A. Baker, J. Math. Phys. 7 (1966)2238.

    Google Scholar 

  33. A.T. Balaban and F. Harary, J. Chem. Doc. 11 (1971)258.

    Google Scholar 

  34. A.J. Schwenk, in:New Directions in the Theory of Graphs, ed. F. Harary (Academic Press, New York, 1973).

    Google Scholar 

  35. M. Randić, MATCH 7 (1979)5.

    Google Scholar 

  36. L.V. Quintas and P.J. Slater, MATCH 12 (1981)75.

    Google Scholar 

  37. P.J. Slater, J. Graph Theory 6 (1982)89.

    Google Scholar 

  38. M. Randić, J. Chem. Inf. Comput. Sci. 24 (1984)164.

    Google Scholar 

  39. K. Szymanski, W.R. Muller, J.V. Knop and N. Trinajstić, J. Chem. Inf. Comput. Sci. 25 (1985)413.

    Google Scholar 

  40. D. Bonchev and N. Trinajstić, J. Comput. Chem. 2 (1981)127.

    Google Scholar 

  41. C. Raychaudhury, S.K. Ray, J.J. Ghosh, A.B. Roy and S.C. Basak, J. Comput. Chem. 5 (1984)581.

    Google Scholar 

  42. A.T. Balaban, Chem. Phys. Lett. 89 (1982)399.

    Google Scholar 

  43. G.J. Niemi, R.R. Regal and G.D. Veith, in:Environmental Applications of Chemometrics, ed. J.J. Breen and P.E. Robinson (American Chemical Society, Washington, DC, 1985), p. 148.

    Google Scholar 

  44. S.C. Basak, V.R. Magnuson, G.J. Niemi, R.R. Regal and G.D. Veith, Math. Modelling 8 (1987)300.

    Google Scholar 

  45. S.C. Basak, V.R. Magnuson, G.J. Niemi and R.R. Regal, Discr. Appl. Math. 19 (1988)17.

    Google Scholar 

  46. S.C. Basak, in:Practical Applications of Quantitative Structure-Activity Relationship (QSAR) Study in Environmental Chemistry and Toxicology, ed. W. Karcher and J. DeVillers (Kluwer Academic, 1990), in press.

  47. M. Johnson, S.C. Basak and G. Maggiora, Math. Comput. Modelling 11 (1988)630.

    Google Scholar 

  48. S.C. Basak, G.J. Niemi and G.D. Veith, Math. Comput. Modelling, in press.

  49. C. Hansch, in:Correlation Analysis in Chemistry, ed. N.B. Chapman and J. Shorter (Plenum, New York, 1978), p. 397.

    Google Scholar 

  50. J. Cairns, Jr. and D.I. Mount, Environ. Sci. Tech. 24 (1990)154.

    Google Scholar 

  51. R. Rosen, J. Theor. Biol. 18 (1968)380.

    Google Scholar 

  52. W. Elssasser,The Physical Foundation of Biology (Pergamon, Oxford, 1958).

    Google Scholar 

  53. J. von Neuman, in:Automata Studies, ed. C.E. Shannon and J. McCarthy (Princeton University Press, Princeton, 1956).

    Google Scholar 

  54. R. Rosen, Int. J. General Systems 3 (1977)227.

    Google Scholar 

  55. J.C. Arcos, Environ. Sci. Tech. 21 (1987)743.

    Google Scholar 

  56. G.D. Veith, D.J. Call and L.T. Brooke, Can. J. Fish Aquat. Sci. 40 (1983)743.

    Google Scholar 

  57. D.J. Klein, Int. J. Quant. Chem. Quant. Chem. Symp. 20 (1986)153.

    Google Scholar 

  58. N. Trinajstić, M. Randić and D.J. Klein, Acta. Pharm. Yugosl. 36 (1986)267.

    Google Scholar 

  59. M. Bunge,Method, Model and Matter (Reidel, Dordrecht/Boston, 1973).

    Google Scholar 

  60. H. Primas,Chemistry, Quantum Mechanics and Reductionism (Springer, Berlin, 1981).

    Google Scholar 

  61. S.J. Weininger, J. Chem. Educ. 61 (1984)939.

    Google Scholar 

  62. J.J. Sylvester, Amer. J. Math. 1 (1878)64.

    Google Scholar 

  63. C.L. Wilkins and M. Randić, Theor. Chim. Acta (Berl.) 58 (1980)45.

    Google Scholar 

  64. L.B. Kier and L.H. Hall,Molecular Connectivity in Chemistry and Drug Research (Academic Press, New York, 1976).

    Google Scholar 

  65. C.E. Shannon, Bell Syst- Tech. J. 27 (1948)379.

    Google Scholar 

  66. N. Wiener,Cybernetics (Wiley, New York, 1948).

    Google Scholar 

  67. W. Ashby,An Introduction to Cybernetics (Wiley, New York, 1956).

    Google Scholar 

  68. A.N. Kolmogorov, Probl. Peredachi. Inf. 5 (1969)3.

    Google Scholar 

  69. D. Bonchev,Information Theoretic Indices for Characterization of Chemical Structures (Research Studies Press, Chichester, 1983).

    Google Scholar 

  70. C.W. Marshall,Applied Graph Theory (Wiley-Interscience, New York, 1971).

    Google Scholar 

  71. E. Trucco, Bull. Math. Biophys. 18 (1956)129.

    Google Scholar 

  72. A. Mowshowitz, Bull. Math. Biophys. 30 (1968)175.

    Google Scholar 

  73. A. Mowshowitz, Bull. Math. Biophys. 30 (1968)225.

    Google Scholar 

  74. N. Rashevsky, Bull. Math. Biophys. 17 (1955)229.

    Google Scholar 

  75. S.H. Bertz, Bull. Math. Biol. 45 (1983)849.

    Google Scholar 

  76. P.E. Long,An Introduction to General Topology (Charles E. Merrill Publ. Co., Columbus, OH, 1971).

    Google Scholar 

  77. L. Brillouin,Science and Information Theory (Academic Press, New York, 1956).

    Google Scholar 

  78. S.C. Basak and V.R. Magnuson, Arzneim. Forsch. 33 (1983)501.

    Google Scholar 

  79. S.C. Basak, D.K. Harriss and V.R. Magnuson, POLLY: Copyright of the University of Minnesota (1988).

  80. E. Anderson, G.D. Veith and D. Weininger, Report No. EPA/600/M-87-021, Environmental Research Laboratory-Duluth, 1987.

  81. SAS/STAT user guide, release 6.03 edition (SAS Institute Inc., Cary, NC, 1988), p. 1028.

  82. S.S. Shapiro and M.B. Wilk, Biometrika 52 (1965)591.

    Google Scholar 

  83. R.D. Cook, Technometrics 19 (1977)15.

    Google Scholar 

  84. M.M. Tatsuoka,Multivariate Analysis: Techniques for Educational and Psychological Research (Wiley, New York, 1971).

    Google Scholar 

  85. R. Gnanadesikan,Methods for Statistical Analysis of Multivariate Observations (Wiley, New York, 1977).

    Google Scholar 

  86. M.J. Greenacre,Theory and Applications of Correspondence Analysis (Academic Press, New York, 1984).

    Google Scholar 

  87. W. Karcher,Spectral Atlas of Polycyclic Aromatic Compounds, Vol. 2 (Kluwer Academic, Dorddrecht/Boston/London, 1988).

    Google Scholar 

  88. I. Motoc, A.T. Balaban, O. Mekenyan and D. Bonchev, MATCH 13 (1982)369.

    Google Scholar 

  89. L.P. Burkhard, A.W. Andren and D.E. Armstrong, Chemosphere 12 (1983)935.

    Google Scholar 

  90. S.C. Basak, G.J. Niemi and G.D. Veith, J. Math. Chem. 4 (1990)185.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basak, S.C., Niemi, G.J. & Veith, G.D. Predicting properties of molecules using graph invariants. J Math Chem 7, 243–272 (1991). https://doi.org/10.1007/BF01200826

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01200826

Keywords

Navigation