Skip to main content
Log in

Registration of MEG/EEG data with 3D MRI: Methodology and precision issues

  • Published:
Brain Topography Aims and scope Submit manuscript

Summary

Mapping neuro-physiological functions to high resolution MRI is an effective means to evaluate localization reconstructions and to exhibit the spatio-temporal aspects of dynamic functional processes. The registration step needed between MEG/EEG and MRI is a source of error which, for the worst cases may be greater than errors related to the localization algorithms. Several registration methods can be used: those based on fiducial markers and those based on surface matching. The aim of this paper is to propose a fully automatic surface matching method and to discuss its extended theoretical and experimental evaluation. The registration procedure matches the skin surface, segmented from MRI, and a digitized description of the head performed with a 3D tracker during the MEG/EEG examination. The registration uncertainties at the edges of the MRI volume were estimated to be between 2 and 3 mm. In comparison with commonly used manual methods the improvement in accuracy is significant. Registration uncertainties are smaller than the localization uncertainties usually observed. By minimizing manual intervention, the reliability of the registration process is increased and the accuracy is stabilized. With this automatic registration method the fusion of MEG/EEG localizations with MRI anatomical data gives highly significant information. Finally the accuracy obtained allows the use of complex anatomical constraints in the localization process without introducing large modelling errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borgefors, G. Distance Transformations in Digital Images. Computer Vision, Graphics and Image Processing, 1986, 34:344–371.

    Google Scholar 

  • Bouliou, A., Bihoué, P., Toulouse, P., Poiseau, E., Scarabin, J.M. Modelisation of the cerebral activity by a probility distribution upon the cortical surface from spatio-temporal MEG data. Human Brain Mapping, 1995, (Supp. 1):105.

    Google Scholar 

  • Chang, H. and Fitzpatick, J.M. A technique for accurate magnetic resonance imaging in the presence of field inhomogeneities. IEEE Trans. Med. Imaging, 1992, 11:319–329.

    Google Scholar 

  • Cohen, D., Cuffin, B.N., Yunokuchi, K., Maniewski, R., Purcell, C., Cosgrove, G.R., Ives, J., Kennedy, J. and Schoner, D. MEG versus EEG localization test using implanted sources in the human brain. Ann. Neurol., 1990, 28:811–817.

    PubMed  Google Scholar 

  • Cuffin, N.B. Effects of Head Shape on EEG's and MEG's. IEEE Trans. Biomed. Eng., 1990, 37(1):44–52.

    PubMed  Google Scholar 

  • Cuffin, N.B. Effects of Local Variations in Skull and Scalp Thickness on EEG's and MEG's. IEEE Trans. Biomed. Eng., 1993, 40(1):42–48.

    PubMed  Google Scholar 

  • Dale, A.M., Sereno, M.I. Improved Localization of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach. J. of Cognitive Neuroscience, 1993, 5(2):162–176.

    Google Scholar 

  • Ebersole, J.S., Squires, K.C., Eliashiv, S.D., Smith, J.R. Applications of Magnetic Source Imaging in Evaluation of Candidates for Epilepsy Surgery. Neuroimaging Clin. of North America, 1995, 5(2):267–287

    Google Scholar 

  • Evans, A.C., Marret, S., Collins, L., Peters, T.M. Anatomicalfunctional correlative analysis of the human brain using three dimensional imaging systems. In: Schneider R.H., Dwyer, III S.J, Gilbert Jost R. (Eds): Proc SPIE Vol 1092, Med Im III: Image Processing, SPIE Press, Bellingham, WA, 1989: 264–274.

    Google Scholar 

  • Fuchs, M., Wischmann, H.-A., Wagner, M., Krüger, J. Coordinate System for Neuromagnetic and Morphological Reconstruction Overlay. IEEE Trans. Biomed. Eng., 1995, 42(4):416–420.

    PubMed  Google Scholar 

  • Gallen, C.C, Schwartz, B., Rieke, K., Pantev, C., Sobel, D., Hirschkoff, E., Bloom, F.E. Intrasubject Reliability and Validity of Somatosensory Source Localization using a large Array Biomagnetometer. Electroenceph. clin. Neurophysiol., 1994, 90:145–156.

    PubMed  Google Scholar 

  • Galloway, R.L., Maciunas, R.J., Bass, W.A., Carpini, W.J. Optical localization for interactive image-guided neurosurgery. SPIE Physics of Medical Imaging Newport Beach CA, 1994, 2164:137–146.

    Google Scholar 

  • Hari, R., Karhu, J., Hämäläinen, M., Knuutila, J., Salonen, O., Sams, M. and Vilkman, V. Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. European Journal of Neuroscience, 1993, 5:724–734.

    PubMed  Google Scholar 

  • Hill, D.L.G., Hawkes, D.J., Crossman, J.E., Gleeson, M.J., Cox, T.C.S., Bracey, E.C.M.L., Strong, A.J., Graves P. Registration of MRI and CT images for skull base surgery using point-like anatomical features. Brit. J. Radiol., 1991, 35(5):1030–1035.

    Google Scholar 

  • Ioannides, A.A, Muratore, R., Balish, M., Sato, S. In Vivo Validation of Distributed Source Solutions for the Biomegnetic Inverse Problem. Brain Topography, 1993, 5(3):263–273.

    PubMed  Google Scholar 

  • Lemoine, D., Lussot, E., Legeard, D., Barillot, C. Multimodal Registration System for the Fusion of MRI, CT, MEG and 3D or Stereotactic Angiographie Data. SPIE Medical Imaging 1994, 2164:46–56.

    Google Scholar 

  • Liégois-Chauvel, C., Laguitton, V., Badier, J.M., Schwartz, D. and Chauvel, P. Rev. Neurol., in press, 1995, 151.

  • Paetau, R., Hämäläinen, M., Hari, R., Kajola, M., Karhu, J., Larsen, T.A., Lindahl, E., Salonen, O. Magnetoencephalographic Evaluation of Children And Adolescents with Intractable Epilepsy. Epilepsia, 1994, 35(2):275–284.

    PubMed  Google Scholar 

  • Pellizari, C.A., Levin, D.N., Chen, G.T.Y., and Chen, C.T. Image registration based on anatomical surface matching. In: Maciunas, R. (Ed.), Interactive image-guided neurosurgery, American Association of Neurological Surgeons, 1993: 47–62.

  • Powell, M.J.D. An Efficient Method for Finding the Minimum of a Function of Several Variables Without Calculating Derivatives. The Computer Journal, 1964:155–162.

  • Press, H.P., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T. Numerical Recipes in C. Cambridge University Press, Cambridge, 1988:309–315.

    Google Scholar 

  • Polhemus. 3 SPACE® User's Manual. Kaiser aerospace and electronics company, 1991.

  • Roberts, T., Rowley, H., Kucharczyk, J. Applications of Magnetic Source Imaging to Presurgical Brain Mapping. Neuroimaging Clin. of North America. 1995, 5(2):251–265.

    Google Scholar 

  • Rohling, R., Munger, P., Hollerbach, J.M., Peters, T. Comparison of relative accuracy between a mechanical and an optical position tracker for image-guided neurosurgery. Journal of Image Guided Surgery, 1995, preprint.

  • Scherg, M. Functional imaging and localization of electromagnetic brain activity. Brain Topography, 1992, 5(2):361–364.

    Google Scholar 

  • Schwartz, D., Poiseau, E., Lemoine, D. MEG/EEG and MRI registration: Errors and uncertainties evaluation. Human Brain Mapping. 1995, (Supp. 1):83

    Google Scholar 

  • Smith, J.R., Schwartz, B.J., Gallen, C., Orrison, W., Lewine, J., Murro, A.M., King, D.W., Park, Y.D. Utilization of Multichannel Magnetoencephalography in the Guidance of Ablative Seizure Surgery. J. Epilepsy, 1995, 8:119–130.

    Google Scholar 

  • Weinberg, H., Brickett, P., Coolsma, F., Baff, M. Magnetic Localisation of Intracranial Dipoles: Simulation with a Physical Model. Electroenceph. clin. Neurophysiol., 1986, 64:159–170.

    PubMed  Google Scholar 

  • Witwer, J.G., Trezek, G.J., Jewet, Don, L. The Effect of Media Inhomogeneities Upon Intracranial Electrical Fields. IEEE Trans. Biomed. Eng., 1972, 19(5):352–362.

    PubMed  Google Scholar 

  • West, J., Fittzpatrick, M., Wang, M.Y., Dawant, M.B., Maurer, C.R., Kessler, R.M., Maciunas, R.J., Barillot, C., Lemoine, D., Collignon, A., Maes, F., Suetens, P., Vandermeulen, D., van den Elsen, P., Hemler, P.F., Napel, T., Sumanaweera, T.S., Harkness, B., Hill, D.L.G., Studholme, C., Malandain, G., Pennec, X., Noz, M.E., Maguire, G.Q., Pollack, M., Pelizzari, C.A., Robb, R.A., Hanson, D., Woods, R.P. Comparison and evaluation of retrospective intermodality image registration techniques. Will appear in: Medical Imaging 1996: Image Processing, SPIE Proc. 1996, 2710.

  • Wood, C.C., Cohen, D., Cuffin, B.N., and Allison, T. Electrical Sources in Human Somataosensory Cortex: Identification by Combined Magnetic and Potential Recordings. Science, 1985, 227:1051–1053.

    PubMed  Google Scholar 

  • Young, S.T., Yip, S.W., Cheng, H.C., Shieh, D. Three-Dimensional Surface Digitizer for facial contour. IEEE Engineering in Medecine and Biology, 1994, 125:141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Schwartz.

Additional information

We thank Pr. P. Toulouse, responsible of the Rennes MEG platform, R.M. Beurel, technician, Pr M. Carsin, head of the radiology department, Pr J.M. Scarabin, head of the neurosurgical department and B. Black from BTI for their valuable contributions in this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, D., Lemoine, D., Poiseau, E. et al. Registration of MEG/EEG data with 3D MRI: Methodology and precision issues. Brain Topogr 9, 101–116 (1996). https://doi.org/10.1007/BF01200710

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01200710

Key words

Navigation