Skip to main content
Log in

Intersecting sets in midset spaces. II

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Avriel andI. Zang, Generalized arcwise-connected functions and characterizations of local-global minimum properties. J. Optim. Theory Appl.32, 407–425 (1980).

    Google Scholar 

  2. L. M.Blumenthal and K.Menger, Studies in geometry. San Francisco 1970.

  3. H.Busemann and B. B.Phadke, Spaces with distinguished geodesies. Basel-New York 1987.

  4. C.-W. Ha, Minimax and fixed point theorems. Math. Ann.248, 73–77 (1980).

    Google Scholar 

  5. P. R.Halmos, Measure Theory. Princeton 1950.

  6. C. D.Horvath, A connectivity approach to minimax inequalities. Preprint.

  7. I. Joó, On a fixed point theorem. Publ. Math. Debrecen36, 127–128 (1989).

    Google Scholar 

  8. D. C. Kay andE. W. Womble, Axiomatic convexity theory and relationships between the Carathéodory, Helly, and Radon numbers. Pacific J. Math.38, 471–485 (1971).

    Google Scholar 

  9. R. Khalil, Best approximation in metric spaces. Proc. Amer. Math. Soc.103, 579–586 (1988).

    Google Scholar 

  10. J. Kindler, Topological intersection theorems. Proc. Amer. Math. Soc.117, 1003–1011 (1993).

    Google Scholar 

  11. J. Kindler, Intersection theorems and minimax theorems based on connectedness. J. Math. Anal. Appl.178, 529–546 (1993).

    Google Scholar 

  12. J. Kindler andR. Trost, Minimax theorems for interval spaces. Acta Math. Hungar.54, 39–49 (1989).

    Google Scholar 

  13. J. Kindler, Intersecting sets in midset spaces. I. Arch. Math.62, 49–57 (1994).

    Google Scholar 

  14. H. Komiya, On minimax theorems without linear structure. Hiyoshi Rev. Nat. Sci. Keio Univ.8, 74–78 (1990).

    Google Scholar 

  15. V. Komornik, Minimax theorems for upper semicontinuous functions. Acta Math. Acad. Sci. Hungar.40, 159–163 (1982).

    Google Scholar 

  16. H. König, A general minimax theorem based on connectedness. Arch. Math.59, 55–64 (1992).

    Google Scholar 

  17. H.König and F.Zartmann, New versions of the minimax theorem. Preprint

  18. J. Matoušek, Extension of Lipschitz mappings on metric trees. Comment. Math. Univ. Carolin.31, 99–104 (1990).

    Google Scholar 

  19. S. A. Naimpally, K. L. Singh andJ. H. M. Whitfield, Fixed points in convex metric spaces. Math. Japon.4, 585–597 (1984).

    Google Scholar 

  20. S.Simons, A flexible minimax theorem. Acta. Math. Hungar., to appear.

  21. S.Simons, A general framework for minimax theorems. Paper presented at the Ttsingtau Univ. Symp., Oct. 1991.

  22. M. Sion, On general minimax theorems. Pacific J. Math.8, 171–176 (1958).

    Google Scholar 

  23. V. P.Soltan, Introduction to the axiomatic theory of convexity (Russian). Kishinev 1984.

  24. W. Takahashi, A convexity in metric space and nonexpansive mappings, I. Kodai Math. Sem. Rep.22, 142–149 (1970).

    Google Scholar 

  25. H. Tuy, On a general minimax theorem. Soviet Math. Dokl.15, 1689–1693 (1974).

    Google Scholar 

  26. H. Tuy, On the general minimax theorem. Colloq. Math.33, 145–158 (1975).

    Google Scholar 

  27. M. van de Vel, Binary convexities and distributive lattices. Proc. London Math. Soc.48, 1–33 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kindler, J. Intersecting sets in midset spaces. II. Arch. Math 62, 168–176 (1994). https://doi.org/10.1007/BF01198671

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01198671

Navigation