Skip to main content
Log in

Effect of peripheral nerve cut on neuropeptides in dorsal root ganglia and the spinal cord of monkey with special reference to galanin

  • Published:
Journal of Neurocytology

Summary

Using the indirect immunofluorescence method andin situ hybridization, the localization and levels of immunoreactivities and mRNAs for several neuropeptides were studied in lumbar dorsal root ganglia and spinal cord of untreated monkeys (Macaca mulatto) and after unilateral transection of the sciatic nerve. Immunoreactive galanin, calcitonin gene-related peptide, substance P and somatostatin and their mRNAs were found in cell bodies in dorsal root ganglia of untreated monkeys and on the contralateral side of the monkeys with unilateral sciatic nerve lesion. After axotomy there was a marked decrease in the number of calcitonin gene-related peptide-, substance P- and somatostatin-positive neurons in dorsal root ganglia ipsilateral to the lesion, whereas the number of galanin positive cells strongly increased. A few neuropeptide tyrosine-positive cells were seen in after axotomy, whereas no such neurons were found in controls. No vasoactive intestinal polypeptide-, peptide histidine isoleucine-, cholecystokinin-, dynorphin-, enkephalin-, neurotensin-or thyrotrophin releasing hormone-positive cell bodies were seen in dorsal root ganglia of any of the groups studied. In the dorsal horn of the spinal cord all peptide immunoreactivities described above, except thyrotropin releasing hormone, were found in varying numbers of nerve fibres with a similar distribution in untreated monkeys and in the contralateral dorsal horn in monkey with unilateral sciatic nerve lesion. Two cholecystokinin antisera were used directed against the C- and N-terminal portions, respectively, showing a distinctly different distribution pattern in the dorsal horn. Somatostatin- and dynorphin-like immunoreactivities were also observed in small neurons in the dorsal horn. No certain effect of axotomy on these interneurons could be seen. However, marked changes were observed after this type of lesion for some peptide containing fibres in the ipsilateral dorsal horn. Thus, there was a marked increase in galanin-like immunoreactivity, whereas calcitonin gene-related peptide-, substance P-, somatostatin-, peptide histidine isoleucine neurotensin- and cholecystokinin-like immunoreactivities decreased. No changes could be observed in neuropeptide tyrosine or enkephalin-positive fibres. The present results demonstrate marked ganglionic and transganglionic changes in peptide levels after peripheral axotomy. When compared to published results on the effect of axotomy on peptides in dorsal root ganglia and spinal cord of rat, both similarities and differences were encountered. Thus, in contrast to rat there was no marked upregulation of vasoactive intestinal polypeptide/peptide histidine isoleucine or neuropeptide tyrosine after axotomy in the monkey, whereas galanin was increased in both species. Both in monkey and rat, calcitonin gene-related peptide, substance P and somatostatin decreased. The decrease in neurotensin, peptide histidine isoleucine, and ‘genuine’ cholecystokinin seen in monkey after axotomy has not been reported in the rat. Experimental studies on rat suggest that galanin may be an endogenous analgesic compound, active particularly after peripheral nerve lesions. We have therefore recently proposed that galanin agonists may be used in treatment of chronic pain, and the present demonstration that galanin is regulated in a similar fashion in a primate gives further support to the proposal to test galanin as an analgesic in human.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amara, S. G., Jonas, V., Rosenfeld, M. G., Ong, E. S. &Evans, R. M. (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products.Nature 298, 240–4.

    Google Scholar 

  • Amara, S. G., Arizza, J. L., Leff, S. E., Swanson, L. W., Evans, R. M. &Rosenfeld, M. G. (1985) Expression in brain of messenger RNA encoding a novel neuropeptide homologous to calcitonin gene-related peptide.Science 229, 1094–7.

    Google Scholar 

  • Aronin, N., Difiglia, M., Liotta, A. S. &Martin, J. B. (1981) Ultrastructural localization and biochemical features of immunoreactive leu-enkephalin in monkey dorsal horn.Journal of Neuroscience 1, 561–77.

    Google Scholar 

  • Arvidsson, U., Cullheim, S., Ulfhake, B., Hökfelt, T. &Terenius, L. (1989) Altered levels of calcitonin generelated peptide (CGRP)-like immunoreactivity of cat lumbar motoneurons after chronic spinal cord transection.Brain Research 489, 387–91.

    Google Scholar 

  • Arvidsson, U., Cullheim, S., Ulfhake, B., Bennet, G. W., Fone, K. C. F., Cuello, A. C., Verhofstad, A. A. J., Visser, T. J. &Hökfelt, T. (1990a) 5-Hydroxytryptamine, substance P and thyrotropin-releasing hormone in the adult cat spinal cord segment L7: immunohisto-chemical and chemical studies.Synapse 6, 237–70.

    Google Scholar 

  • Arvidsson, U., Johnson, H., Piehl, F., Cullheim, S., Hökfelt, T., Risling, M., Terenius, L. &Ulfhake, B. (1990b) Peripheral nerve section induces increased levels of calcitonin gene-related (CGRP)-like immunoreactivity in axotomized motoneurons.Experimental Brain Research 79, 212–16.

    Google Scholar 

  • Arvidsson, U., Schalling, M., Cullheim, S., Ulfhake, B., Terenius, L., Verhofstad, A. &Hökfelt, T. (1990c) Evidence for coexistence between calcitonin generelated peptide and serotonin in the bulbospinal pathway in the monkey.Brain Research 532, 47–57.

    Google Scholar 

  • Arvidsson, U., Ulfhake, B., Cullheim, S., Bergstrand, A., Theodorsson, E. &Hökfelt, T. (1991a) Distribution of125I-galanin and its coexistence with 5-hydroxytryptamine in the cat spinal cord: biochemical, histochemical and experimental studies at the light and electron microscopic level.Journal of Comparative Neurology 308, 115–38.

    Google Scholar 

  • Arvidsson, U., Ulfhake, B., Cullheim, S., Terenius, L. &Hökfelt, T. (1991b) Calcitonin gene-related peptide in monkey spinal cord and medulla oblongata.Brain Research 558, 330–4.

    Google Scholar 

  • Arvidsson, U., Cullheim, S., Ulfhake, B., Ramirez, V., Dagerlind, Å, Luppi, P.-H., Kitahama, K., Jouvet, M., Terenius, L., Åman, K. &Hökfelt, T. (1992a) Distribution of enkephalin and its relation to serotonin in cat and monkey spinal cord and brain stem,Synapse 11, 85–104.

    Google Scholar 

  • Arvidsson, U., Ulfhake, B., Cullheim, S., Shupliakov, O., Brodin, E., Franck, J., Bennett, G. F., Fone, K. C. F., Visser, T. J. &Hökfelt, T. (1992b) Thyrotropin-releasing hormone (TRH)-like immunoreactivity in the grey monkey (Macaca fascicularis) spinal cord and medulla oblongata with special emphasis on the bulbospinal tract.Journal of Comparative Neurology 322, 293–310.

    Google Scholar 

  • Barber, R. P., Vaughn, J. E., Slemmon, R., Salvaterra, P. M., Roberts, E. &Leeman, S. E. (1979) The origin, distribution and synaptic relationships of substance P axons in rat spinal cord.Journal of Comparative Neurology 184, 331–52.

    Google Scholar 

  • Barron, K. D. (1983) Comparative observations on the cytologic reactions of central and peripheral nerve cells to axotomy. InSpinal Cord Reconstruction (edited byKao, C. C., Bunge, R. P. &Reier, P. J.) pp. 7–40. New York: Raven Press.

    Google Scholar 

  • Bartfai, T., Bedecs, K., Land, T., Langel, Ü., Bertorelli, R., Girotti, P., Consolo, S., Xu, X., Wiesenfeld-Hallin, Z., Nilsson, S., Pieribone, V. &Hökfelt, T. (1991) High-affinity chimeric peptide that blocks the neuronal actions of galanin in the hippocampus, locus coeruleus, and spinal cord.Proceedings of the National Academy of Sciences (USA) 88, 10961–5.

    Google Scholar 

  • Brazeau, P., Vale, W., Burgus, R., Ling, N., Butcher, M., Rivier, J. &Guillemin, R. (1973) Hypothalamic peptide that inhibits the secretion of immunoreactive pituitary growth hormone.Science 179, 77–9.

    Google Scholar 

  • Brenneman, D. E. &Eiden, L. E. (1986) Vasoactive intestinal peptide and electrical activity influence neuronal survival.Proceedings of the National Academy of Sciences (USA) 83, 1159–62.

    Google Scholar 

  • Cameron, A. A., Pover, C. M., Willis, W. D. &Coggeshall, R. E. (1992) Evidence that fine primary afferent axons innervate a wider territory in the superficial dorsal horn following peripheral axotomy.Brain Research 575, 151–4.

    Google Scholar 

  • Carlton, S. M. &Hayes, E. S. (1989) Dynorphin A(1–8) immunoreactive cell bodies, dendrites and terminals are postsynaptic to calcitonin gene-related peptide primary afferent terminals in the monkey dorsal horn.Brain Research 504, 124–8.

    Google Scholar 

  • Carlton, S. M., Mcneill, D. I., Chung, K. &Coggeshall, R. E. (1987) A light and electron microscopic level analysis of calcitonin gene-related peptide (CGRP) in the spinal cord of the primate: an immuno-histochemical study.Neuroscience Letters 82, 145–50.

    Google Scholar 

  • Carlton, S. M., Mcneill, D. L., Chung, K. &Coggeshall, R. E. (1988) Organization of calcitonin gene-related peptide-immunoreactive terminals in the primate dorsal horn.Journal of Comparative Neurology 276, 527–36.

    Google Scholar 

  • Carlton, S. M., Westlund, K. N., Zhang, D., Sorkin, L. S. &Willis, W. D. (1990) Calcitonin gene-related peptide containing primary afferent fibers synapse on primate spinothalamic tract cells.Neuroscience Letters 109, 76–81.

    Google Scholar 

  • Chang, M., Leeman, S. E. &Niall, H. D. (1971) Amino acid sequence of substance P.Nature 232, 86–7.

    Google Scholar 

  • Ch'ng, J. L. C., Christofides, N. D., Anand, P., Gibson, S. J., Allen, Y. S., Su, H. C., Tatemoto, K., Morrison, J. F. B., Polak, J. M. &Bloom, S. R. (1985) Distribution of galanin immunoreactivity in the central nervous system and responses of galanin-containing neuronal pathways to injury.Neuroscience 16, 343–54.

    Google Scholar 

  • Coffield, J. A., Miletic, V., Zimmerman, E., Hoffert, M. J. &Brooks, B. R. (1986) Demonstration of thyrotropin-releasing hormone immunoreactivity in neurons of the mouse dorsal horn.Journal of Neuroscience 6, 1194–7.

    Google Scholar 

  • Coderre, T. J., Grimes, R. W. &Melzack, R. (1986) Deafferentation and chronic pain in animals. An evaluation of evidence suggesting autotomy is related to pain.Pain 26, 61–84.

    Google Scholar 

  • Conrath, M., Taquet, H. M. P. &Carayon, A. (1989) Immunocytochemical evidence for calcitonin gene-related peptide-like neurons in the dorsal horn and lateral spinal nucleus of the rat cervical spinal cord.Journal of Chemical Neuroanatomy 2, 334–7.

    Google Scholar 

  • Coons, A. H. (1958) Fluorescent antibody methods. InGeneral Cytochemical Methods (edited byDanielli, J. F.) pp. 399–422. New York: Academic Press.

    Google Scholar 

  • Cortés, R., Arvidsson, U., Schalling, M. &Ceccatelli, S. (1990) Studies on mRNA for cholecystokinin, calcitonin gene-related peptide and choline acetyl-transferase in the lower brain stem, spinal cord and dorsal root ganglia of rat and guinea pig with special reference to motoneurons.Journal of Chemical Neuroanatomy 3, 467–85.

    Google Scholar 

  • Cridland, R. A. &Henry, J. L. (1988) Effects of intrathecal administration of neuropeptides on a spinal nociceptive reflex in the rat: VIP, galanin, CGRP, TRH, somatostatin and angiotensin II.Neuropeptides 11, 23–32.

    Google Scholar 

  • Dagerlind, Å., Friberg, K., Bean, A. J. &Hökfelt, T. (1992) Sensitive mRNA detection using unfixed tissue: combined radioactive and non-radioactivein situ hybridization histochemistry.Histochemistry,98, 39–49.

    Google Scholar 

  • Dalsgaard, C.-J., Hökfelt, T., Johansson, O. &Elde, R. (1981) Somatostatin immunoreactive cell bodies in the dorsal horn and the parasympathetic intermediolateral nucleus of the rat spinal cord.Neuroscience Letters 27, 335–9.

    Google Scholar 

  • De Lanerolle, N. C. &Lamotte, C. C. (1983) Ultrastructure of chemically defined systems in the dorsal horn of the monkey. I. Substance P immunoreactivity.Brain Research 274, 31–49.

    Google Scholar 

  • Difiglia, M., Aronin, N. &Leeman, S. E. (1982) Light microscopic and ultrastructural localization of immunoreactive substance P in the dorsal horn of monkey spinal cord.Neuroscience 7, 1127–39.

    Google Scholar 

  • Difiglia, M., Aronin, N. &Leeman, S. E. (1984) Ultrastructural localization of immunoreactive neurotensin in the monkey superficial dorsal horn.Journal of Comparative Neurology 225, 1–12.

    Google Scholar 

  • Dumoulin, F. L., Raivich, G., Streit, W. J. &Kreutzberg, G. W. (1991) Differential regulation of calcitonin gene-related peptide (CGRP) in regenerating rat facial nucleus and dorsal root ganglion.European Journal of Neuroscience 3, 338–42.

    Google Scholar 

  • Evans, H. &Shine, J. (1991) Human galanin: molecular cloning reveals a unique structure.Endocrinology 129, 1682.

    Google Scholar 

  • Euler, U. S. V. &Gaddum, J. H. (1931) An unidentified depressor substance in certain tissue extracts.Journal of Physiology 72, 74–87.

    Google Scholar 

  • Fahrenkrug, J. &Pedersen, J. H. (1984) Development and validation of a specific radioimmunoassay for PHI in plasma.Clinica chimica Acta 143, 183–92.

    Google Scholar 

  • Fahrenkrug, J. &Schaffalitzky De Muckadell, O. B. (1977) Radioimmunoassay of vasoactive intestinal polypeptide (VIP) in plasma.Journal of Laboratory and Clinical Medicine 89, 1379–88.

    Google Scholar 

  • Fahrenkrug, J. &Schaffalitzky De Muckadell, O. B. (1978) Distribution of vasoactive intestinal polypeptide (VIP) in the porcine central nervous system.Journal of Neurochemistry 31, 1445–51.

    Google Scholar 

  • Fields, H. L. &Basbaum, A. I. (1984) Endogenous pain control mechanisms. InTextbook of Pain (edited byWall, P. D. &Melzack, R.) pp. 142–52. Edinburgh: Churchill Livingstone.

    Google Scholar 

  • Fuji, K., Senba, E., Fuji, S., Nomura, I., Wu, J.-Y., Ueda, U. &Tohyama, M. (1985) Distribution, ontogeny and projections of cholecystokinin-8, vasoactive intestinal polypeptide and γ-aminobutyrate-containing neuron systems in the rat spinal cord: an immunohistochemical analysis.Neuroscience 14, 881–94.

    Google Scholar 

  • Gibson, S. J., Polak, J. M., Bloom, S. R. &Wall, P. D. (1981) The distribution of nine peptides in rat spinal cord with special emphasis on the substantia gelatinosa an on the area around the central canal (lamina X).Journal of Comparative Neurology 201, 65–79.

    Google Scholar 

  • Gibson, S. J., Polak, J. M., Anand, P., Blank, M. A., Morrison, J. F. B., Kelly, J. S. &Bloom, S. R. (1984a) The distribution and origin of VIP in the spinal cord of six mammalian species.Peptides 5, 201–7.

    Google Scholar 

  • Gibson, S. J., Polak, J. M., Bloom, S. R., Sabate, I. M., Mulderry, P. M., Ghatei., M. A., Mcgregor, G. P., Morrison, J. F. B., Kelly, J. S., Evans, R. M. &Rosenfeld, M. G. (1984b) Calcitonin gene-related peptide immunoreactivity in the spinal cord of man and of eight other species.Journal of Neuroscience 4, 3101–11.

    Google Scholar 

  • Gibson, S. J., Polak, J. M., Allen, J. M., Adrian, T. E., Kelly, J. S. &Bloom, S. R. (1984c) The distribution and origin of a novel brain peptide, neuropeptide Y, in the spinal cord of several mammals.Journal of Comparative Neurology 227, 78–91.

    Google Scholar 

  • Goodman, R. H., Aron, D. C. &Ross, B. A. (1989) Rat pre-prosomatostatin.Journal of Biological Chemistry 258, 5570–3.

    Google Scholar 

  • Gozes, I. &Brenneman, D. E. (1990) VIP: molecular biology and neurobiological function.Molecular Neurobiology 3, 201–36.

    Google Scholar 

  • Haas, C. A., Streit, W. J. &Kreutzberg, G. W. (1990) Rat facial motoneurons expressed increased levels of calcitonin gene-related peptide mRNA in response to axotomy.Journal of Neuroscience Research 27, 270–5.

    Google Scholar 

  • Harkness, D. H. &Brownfield, M. S. (1986) A thyrotropin-releasing hormone-containing system in the rat dorsal horn separate from serotonin.Brain Research 384, 323–33.

    Google Scholar 

  • Hartman, B. K., Zide, D. &Udenfriend, S. (1972) The use of dopamine β-hydroxylase as a marker for the nor-adrenergic pathways of the central nervous system in the rat.Proceedings of the National Academy of Sciences (USA) 69, 2722–6.

    Google Scholar 

  • Helke, C. J. &Rabchevsky, A. (1991) Axotomy alters putative neurotransmitters in visceral sensory neurons of the nodose and petrosal ganglia.Brain Research 551, 44–51.

    Google Scholar 

  • Henry, J. L. (1976) Effects of substance P on functionally identified units in cat spinal cord.Brain Research 114, 439–51.

    Google Scholar 

  • Howells, R. D., Kilpatrick, D. L., Bhatt, R., Monham, J. J., Poonian, M. &Udenfriend, S. (1984) Molecular cloning and sequences determination of rat prepro-enkephalin cDNA: sensitive probe for studying transcriptional changes in rat tissue.Proceedings of the National Academic of Sciences (USA) 81, 7651–5.

    Google Scholar 

  • Hökfelt, T., Ljungdahl, A., Terenius, L., Elde, R. &Nilsson, G. (1977) Immunohistochemical analysis of peptide pathways possibly related to pain and analgesia. Enkephalin and substance P.Proceedings of the National Academy of Sciences (USA) 74, 3081–5.

    Google Scholar 

  • Hökfelt, T., Skirboll, L., Everitt, B. J., Meister, B., Brownstein, M., Jacobs, T., Faden, A., Kuga, S., Goldstein, M., Markstein, R., Dockray, G. &Rehfeld, J. (1985) Distribution of cholecystokinin-like immunoreactivity in the nervous system with special reference to coexistence with classical neurotransmitters and other neuropeptides. InNeuronal cholecystokinin, Vol. 448 (edited byVanderhaeghen, J.-J. &Crawley, J. N.) pp. 255–74. New York: Annals of the New York Academy of Sciences.

    Google Scholar 

  • Hökfelt, T., Fahrenkrug, G., Ju, S., Ceccatelli, S., Tsuruo, Y., Meister, B., Mutt, V., Rundgren, M., Brodin, E., Terenius, L., Hulting, A.-L., Werner, S., Björklund, H. &Vale, W. (1987a) Analysis of PHI/VIP-immunoreactive neurons in the central nervous system with special reference to their relation to CRF- and enkephalin-like immunoreactivities in the paraventricular hypothalamic nucleus.Neuroscience 23, 827–57.

    Google Scholar 

  • Hökfelt, T., Wiesenfeld-Hallin, Z., Villar, M. &Melander, T. (1987b) Increase of galanin-like immunoreactivity in rat dorsal root ganglion cells after peripheral axotomy.Neuroscience Letters 83, 217–20.

    Google Scholar 

  • Hökfelt, T., Herrera-Marschitz, M., Seroogy, K., Gong, J., Staines, W. A., Holets, V., Schalling, M., Ungerstedt, U., Post, C., Rehfeld, J. F., Frey, P., Fischer, J., Dockray, G., Hamaoka, T., Walsh, H. H. &Goldstein, M. (1988) Immunohistochemical studies on cholecystokinin (CCK)-immunoreactive neurons in the rat using sequence specific antisera and with special reference to the caudate nucleus and primary sensory neurons.Journal of Chemical Neuroanatomy 1, 11–52.

    Google Scholar 

  • Hökfelt, T., Cortés, R., Schalling, M., Ceccatelli, S., Pelto-Huikko, M., Persson, H. &Villar, M. J. (1991) Distribution patterns of CCK and CCK mRNA in some neuronal and non-neuronal tissues.Neuropeptides 19, 31–43.

    Google Scholar 

  • Hökfelt, T., Arvidsson, U., Ceccatelli, S., Cortés, R., Cullheim, S., Dagerlind, Å., Johnson, H., Orazzo, C., Piehl, F., Pieribone, V., Schalling, M. L. T., Ulfhake, B., Verge, V. M., Villar, M., Wiesenfeld-Hallin, Z., Xu, X.-J. &Xu, Z. (1992) Calcitonin gene-related peptide in the brain, spinal cord, and some peripheral systems. InCalcitonin gene-related peptide. The first decade of a novel pleiotropic neuropeptide, Vol. 657 (edited byTaché, Y., Holzer, P. &Rosenfeld, G.) pp. 119–34. New York: Annals of the New York Academy of Sciences.

    Google Scholar 

  • Hunt, S. P. (1983) Cytochemistry of the spinal cord. InChemical Neuroanatomy (edited byEmson, P. C.) pp. 53–84. New York: Raven Press.

    Google Scholar 

  • Hunt, S. P., Kelly, J. S., Emson, P. C., Kimmel, J. R., Miller, R. J. &Wu, J.-Y. (1981) An immunohistochemical study of neuronal populations containing neuropeptides or gamma-aminobutyrate within the superficial layers of the rat dorsal horn.Neuroscience 6, 1883–98.

    Google Scholar 

  • Iadarola, M. J., Brady, L. S., Draisci, G. &Dubner, R. (1988) Enhancement of dynorphin gene expression in spinal cord following experimental inflammation: stimulus specificity, behavioural parameters and opioid receptor binding.Pain 35, 313–26.

    Google Scholar 

  • Ishida-Yamamoto, A. &Tohyama, M. (1989) Calcitonin gene-related peptide in the nervous tissue.Progress in Neurobiology xx, 335–85.

    Google Scholar 

  • Itoh, N., Obata, K., Yanaihara, I. &Okamoto, H. (1983) Human preprovasoactive intestinal polypeptide contains a novel PHI-27 peptide, PHM-27.Nature 304, 547–9.

    Google Scholar 

  • Jessell, T., Tsunoo, A., Kanazawa, I. &Otsuka, M. (1979) Substance P: depletion in the dorsal horn of the rat spinal cord after section of the peripheral processes of primary sensory neurons.Brain Research 168, 247–59.

    Google Scholar 

  • Johnson, D. G. &De C Nougueira Araujo, G. M. (1981) A simple method of reducing the fading of immunofluorescence during microscopy.Journal of Immunological Methods 43, 349–50.

    Google Scholar 

  • Ju, G., Hökfelt, T., Fischer, J. A., Frey, P., Rehfeld, J. F. &Dockray, G. J. (1986) Does cholecystokinin-like immunoreactivity in the rat primary sensory neurons represent calcitonin gene-related peptides?Neuroscience Letters 68, 305–10.

    Google Scholar 

  • Ju, G., Hökfelt, T., Brodin, E., Fahrenkrug, J., Fischer, J. A., Frey, P., Elde, R. P. &Brown, J. C. (1987) Primary sensory neurons of the rat showing calcitonin gene-related peptide (CGRP) immunoreactivity and their relation to substance P-, somatostatin-, galanin-, vasoactive intestinal polypeptide- and cholecystokinin-immunoreactive ganglion cells.Cell and Tissue Research 247, 417–31.

    Google Scholar 

  • Kashiba, H., Senba, E., Kawai, Y. &Tohyama, M. (1992a) Axonal blockade induces the expression of vasoactive intestinal polypeptide and galanin in rat dorsal root ganglion neurons.Brain Research 577, 19–28.

    Google Scholar 

  • Kashiba, H., Senba, E., Ueda, Y. &Tohyama, M. (1992b) Co-localized but target-unrelated expression of vasoactive intestinal polypeptide and galanin in rat dorsal root ganglion neurons after peripheral nerve crush injury.Brain Research 582, 47–57.

    Google Scholar 

  • Klein, C. M., Westlund, K. N. &Coggeshall, R. E. (1990) Percentages of dorsal root axons immunoreactive for galanin are higher than those immunoreactive for calcitonin gene-related peptide in the rat.Brain Research 519, 97–101.

    Google Scholar 

  • Kordower, J. H., Le, H. K. &Mufson, E. J. (1992) Galanin immunoreactivity in the primate central nervous system.Journal of Comparative Neurology 319, 479–500.

    Google Scholar 

  • Krause, J. E., Chirgwin, J. M., Carter, M. S., Xu, Z. S. &Hershey, D. (1987) Three rat preprotachykinin mRNAs encode the neuropeptide substance P and neurokinin A.Proceedings of the National Academy of Sciences (USA) 84, 881–5.

    Google Scholar 

  • Kreutzberg, G. W. (1982) Acute neuronal reaction to injury. InRepair and Regeneration of the Nervous System. (edited byNicholls, J. G.) pp. 57–69. Berlin: Springer.

    Google Scholar 

  • Kuraishi, Y., Kawamura, M., Yamaguchi, T., Houtani, T., Kawabata, S., Futaki, S., Fujii, N. &Satoh, M. (1991) Intrathecal injections of galanin and its antiserum affect nociceptive response of rat to mechanical, but not thermal stimuli.Pain 44, 321–4.

    Google Scholar 

  • Lamotte, C. C. &De Lanerolle, N. C. (1983) Ultrastructure of chemically defined neuron systems in the dorsal horn of the monkey. II. Methionine-enkephalin immunoreactivity.Brain Research 274, 51–63.

    Google Scholar 

  • Lamotte, C. C. &De Lanerolle, N. C. (1986) VIP terminals, axons, and neurons: distribution throughout the length of monkey and cat spinal cord.Journal of Comparative Neurology 249, 133–45.

    Google Scholar 

  • Lamotte, C. C. &Shapiro, C. M. (1991) Ultrastructural localization of substance P, met-enkephalin, and somatostatin immunoreactivity in lamina X of the primate spinal cord.Journal of Comparative Neurology 306, 290–306.

    Google Scholar 

  • Larhammar, D., Ericsson, A. &Persson, H. (1987) Structure and expression of the rat neuropeptide Y gene.Proceedings of the National Academy of Sciences (USA) 84, 2068–72.

    Google Scholar 

  • Lechan, R. M., Snapper, S. B., Jacobson, S. &Jackson, I. M. D. (1984) The distribution of thyrotropin-releasing hormone (TRH) in the rhesus monkey spinal cord.Peptides 5, 185–94.

    Google Scholar 

  • Lieberman, A. R. (1971) The axon reaction: a review of the principal features of perikaryal responses to axon injury.International Review of Neurobiology 14, 49–124.

    Google Scholar 

  • Ljungdahl, Å., Hökfelt, T. &Nilsson, G. (1978) Distribution of substance P-like immunoreactivity in the central nervous system of the rat I. Cell bodies and nerve terminals.Neuroscience 3, 861–943.

    Google Scholar 

  • Lundberg, J. M., Terenius, L., Hökfelt, T. &Goldstein, M. (1983) High levels of neuropeptide Y in peripheral noradrenergic neurons in various mammals including man.Neuroscience Letters 42, 167–72.

    Google Scholar 

  • Magistretti, P. J. &Schorderet, M. (1984) VIP and noradrenaline act synergistically to increase cyclic AMP in cerebral cortex.Nature 308, 280–2.

    Google Scholar 

  • Magistretti, P. J., Morrison, J. H., Shoemaker, W. J., Sapin, V. &Bloom, F. E. (1981) Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: a possible regulatory mechanism for the control of energy metabolism.Proceedings of the National Academy of Sciences (USA) 78, 6535–9.

    Google Scholar 

  • Marti, E., Gibson, S. J., Polak, J. M., Facer, P., Springall, D. R., Van Aswegen, G., Aitchison, M. &Koltzenburg, M. (1987) Ontogeny of peptide- and amine-containing neurones in motor, sensory, and autonomic regions of rat and human spinal cord, dorsal root ganglia and rat skin.Journal of Comparative Neurology 266, 332–59.

    Google Scholar 

  • Mcgregor, G. P., Gibson, S. J., Sabate, I. M., Blank, M. A., Christofides, N. D., Wall, P. D., Polak, J. M. &Bloom, S. R. (1984) Effect of peripheral nerve section and nerve crush on spinal cord neuropeptides in the rat: increased VIP and PHI in the dorsal horn.Neuroscience 13, 207–16.

    Google Scholar 

  • Melander, T., Hökfelt, T. &Rökaeus, Å (1986) Distribution of galanin-like immunoreactivity in the rat central nervous system.Journal of Comparative Neurology 248, 475–517.

    Google Scholar 

  • Miletic, V. &Tan, H. (1988) Iontophoretic application of calcitonin gene related peptide produces a slow and prolonged excitation of neurons in cat lumbar dorsal horn.Brain Research 446, 169–72.

    Google Scholar 

  • Millan, M. J., Millan, M. H., Czlonkowski, A., Höllt, V., Pilcher, C. W. T., Herz, A. &Colpaert, F. C. (1986) A model for chronic pain in the rat: response to multiple opioid systems to adjuvant-induced arthritis.Journal of Neuroscience 6, 899–906.

    Google Scholar 

  • Molander, C., Kinnman, E. &Aldskogius, H. (1988) Expansion of spinal cord primary sensory afferent projection following combined sciatic nerve resection and saphenous nerve crush: a horseradish peroxidase study in the adult rat.Journal of Comparative Neurology 276, 436–41.

    Google Scholar 

  • Moore, R. Y. (1989) Cranial motor neurons contain either galanin- or calcitonin gene-related peptide-like immunoreactivity.Journal of Comparative Neurology 282, 512–22.

    Google Scholar 

  • Morris, H. R., Panico, M., Etienne, T., Tippins, J., Girgis, S. I. &Macintyre, I. (1984) Isolation and characterization of human calcitonin gene-related peptide.Nature 308, 746–8.

    Google Scholar 

  • Morion, C. R. &Hutchinson, W. D. (1989) Release of sensory neuropeptides in the spinal cord: studies with calcitonin gene-related peptide and galanin.Neuroscience 31, 807–15.

    Google Scholar 

  • Mutt, V. &Jorpes, G. E. (1968) Structure of cholecys-tokinin-pancreozymin. I. Cleavage with thrombin and with trypsin.European Journal of Biochemistry 6, 156–62.

    Google Scholar 

  • Nahin, R. I., Hylden, J. L. K., Iadarola, M. J. &Dubner, R. (1989) Peripheral inflammation is associated with increased dynorphin immunoreactivity in both projection and local circuit neurons in the superficial dorsal horn of the rat lumbar spinal cord.Neuroscience Letters 96, 247–52.

    Google Scholar 

  • Naranjo, J. R., Mellström, B., Archaval, M. &Sassone-Corsi, P. (1991) Molecular pathway of pain: Fos/Jun-mediated activation of a noncanonical AP-1 site in the prodynorphin gene.Neuron 6, 607–17.

    Google Scholar 

  • Nicholas, A. P., Pieribone, V. A., Arvidsson, U. &Hökfelt, T. (1992) Serotonin-, substance P- and glutamate/aspartate-like immunoreactivities in medullo-spinal pathways of rat and primate.Neuroscience 48, 545–59.

    Google Scholar 

  • Nielsch, U. &Keen, P. (1989) Reciprocal regulation of tachykinin- and vasoactive intestinal peptide-gene expression in rat sensory neurons following cut and crush injury.Brain Research 481, 25–30.

    Google Scholar 

  • Nielsch, V., Bisby, M. A. &Keen, P. (1987) Effect of cutting or crushing the rat sciatic nerve on synthesis of substance P by isolated L5 dorsal root ganglia.Neuropeptides 10, 137–45.

    Google Scholar 

  • Noguchi, K., Senba, E., Morita, Y., Sato, M. &Tohyama, M. (1989) Prepro-VIP preprotachykinin mRNAs in the rat dorsal root ganglion cells following peripheral axotomy.Molecular Brain Research 6, 327–30.

    Google Scholar 

  • Noguchi, K., Senba, E., Morita, Y., Sato, M. &Tohyama, M. (1990) α-CGRP and β-CGRP mRNAs are differentially regulated in the rat spinal cord and dorsal root ganglion.Molecular Brain Research 7, 299–304.

    Google Scholar 

  • Noguchi, K., Kowalski, K., Traue, R., Solodkin, A., Iadarola, M. J. &Ruda, M. A. (1991) Dynorphin expression and fos-like immunoreactivity following inflammation induced hyperalgesia are colocalized in spinal cord neurons.Molecular Brain Research 10, 227–33.

    Google Scholar 

  • Noguchi, K., Dubner, R. &Ruda, M. A. (1992) Preproenkephalin mRNA in spinal dorsal horn neurons is induced by peripheral inflammation and is colocalized with Fos and Fos-related proteins.Neuroscience 46, 561–70.

    Google Scholar 

  • Orazzo, C., Pieribone, V. A., Ceccatelli, S., Terenius, L. &Hökfelt, T. (1992) CGRP-like immunoreactivity in All dopamine neurons projecting to the spinal cord and a note on CGRP-CCK cross-reactivity.Brain Research 600, 39–48.

    Google Scholar 

  • Pease, P. C. (1962) Buffered formaldehyde as a killing agent and primary fixative for electron microscopy.Anatomical Records 142, 342.

    Google Scholar 

  • Piehl, F., Arvidsson, U., Johnson, H., Cullheim, S., Villar, M., Dagerlind, A., Terenius, L., Hökfelt, T. &Ulfhake, B. (1991) Calcitonin gene-related peptide (CGRP)-like immunoreactivity and CGRP mRNA in rat spinal cord motoneurons after different types of lesions.European Journal of Neuroscience 3, 737–57.

    Google Scholar 

  • Platt, J. L. &Michael, A. F. (1983) Retardation of fading and enhancement of intensity of immunofluorescence by p-phenylenediamineJournal of Histochemistry and Cytochemistry 31, 840–2.

    Google Scholar 

  • Post, C., Alari, L. &Hökfelt, T. (1988) Intrathecal galanin increases the latency in the tail flick and hot plate tests in mouse.Acta Physiologica Scandinavica 132, 583–4.

    Google Scholar 

  • Przewlocki, R., Gramsch, C., Pasi, A. &Herz, A. (1983) Characterization and localization of immunoreactive dynorphin, α-neo-endorphin, metenkephalin and substance P in human spinal cord.Brain Research 280, 95–103.

    Google Scholar 

  • Randic, M., Gerber, G., Ryu, P. D. &Kangrga, I. (1987) Inhibitory actions of galanin and somatostain 28 on rat spinal dorsal horn neurons.Society for Neuroscience Abstracts 13, 1308.

    Google Scholar 

  • Rethelyi, M., Füst, A. &Bartfai, T. (1989) Effect of nerve injury on the structure and peptide content of primary sensory neurons.International Union of Physiological Sciences Abstracts 17, 198.

    Google Scholar 

  • Rexed, B. (1952) The cytoarchitectonic organization of the spinal cord in the cat.Journal Comparative Neurology 96, 415–95.

    Google Scholar 

  • Rexed, B. (1954) A cytoarchitectonic atlas of the spinal cord in the cat.Journal Comparative Neurology 100, 297–379.

    Google Scholar 

  • Rökaeus, Å., Melander, T., Hökfelt, T., Lundberg, J. M., Tatemoto, K., Carlquist, M. &Mutt, V. (1984) A galanin-like peptide in the central nervous system and intestine of the rat.Neuroscience Letters 47, 161–6.

    Google Scholar 

  • Rosenfeld, M. G., Mermod, J. J., Amara, S. G., Swanson, L. W., Sawchenko, P. E., Rivier, J., Vale, W. W. &Evans, R. M. (1983) Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing.Proceedings of the National Academy of Sciences (USA) 304, 129–35.

    Google Scholar 

  • Ruda, M. A., Iadarola, M. J., Cohen, L. V. &Young, W. S. I. (1988)In situ hybridization histochemistry and immunocytochemistry reveal an increase in spinal dynorphin biosynthesis in rat model of peripheral inflammation and hyperalgesia.Proceedings of the National Academy of Sciences (USA) 85, 622–6.

    Google Scholar 

  • Ryu, P. D., Greber, G., Murase, K. &Randic, M. (1988) Actions of calcitonin gene-related peptide on rat spinal dorsal horn neurons.Brain Research 441, 357–61.

    Google Scholar 

  • Said, S. I. &Mutt, V. (1970) Polypeptide with broad biological activity: isolation from small intestine.Science 169, 1217–18.

    Google Scholar 

  • Salt, T. E. &Hill, R. G. (1983) Neurotransmitter candidates of somatosensory primary afferent fibers.Neuroscience 10, 1083–103.

    Google Scholar 

  • Schalling, M. (1990)In situ hybridization studies on regulatory molecules in neural and endocrine tissue with special reference to expression of coexisting peptides. Stockholm: Karolinska Institute.

    Google Scholar 

  • Senba, E., Yanaihara, C., Yanahihara, N. &Tohyama, M. (1989) Proenkephalin opioid peptide product in the sensory ganglia of the rat: a developmental immunohistochemical study.Developmental Brain Research 48, 263–71.

    Google Scholar 

  • Seybold, V. S. &Elde, R. P. (1982) Neurotensin immunoreactivity in the superficial laminae of the dorsal horn of the rat. I. Light microscopic studies of the cell bodies and proximal dendrites.Journal of Comparative Neurology 204, 89–100.

    Google Scholar 

  • Shehab, S. A. S. &Atkinson, M. E. (1984) Sciatic nerve section has variable effects on primary afferent neuropeptides.Journal of Anatomy 139, 725 (abstract).

    Google Scholar 

  • Shehab, S. A. S. &Atkinson, M. E. (1986a) Vasoactive intestinal polypeptide increases in areas of the dorsal horn of the spinal cord from which other neuropeptides are depleted following peripheral axotomy.Experimental Brain Research 62, 422–30.

    Google Scholar 

  • Shehab, S. A. &Atkinson, M. E. (1986b) Vasoactive intestinal polypeptide (VIP) increases in the spinal cord after peripheral axotomy of the sciatic nerve originate from primary afferent neurons.Brain Research 372, 37–44.

    Google Scholar 

  • Skofitsch, G. &Jacobowitz, D. M. (1985) Galanin-like immunoreactivity in capsaicin sensitive sensory neurons and ganglia.Brain Research Bulletin 15, 191–5.

    Google Scholar 

  • Stjärne, L. (1989) Basic mechanisms and local modulation of nerve inpulse-induced secretion of neurotransmitters from individual sympathetic nerve varicosities.Review of Physiological and Biochemical Pharmacology 112, 1–113.

    Google Scholar 

  • Streit, W. J., Dumoulin, F. L., Raivich, G. &Kreutzberg, G. W. (1989) Calcitonin gene-related peptide increases in the rat facial motoneurons after peripheral nerve transection.Neuroscience Letters 101, 143–8.

    Google Scholar 

  • Takahashi, Y., Kato, K., Hayashizaki, Y., Wakabayashi, T., Ohtsuka, E., Matsuki, S., Ikehara, M. &Matsubara, K. (1985) Molecular cloning of the human cholecystokinin gene by use of a synthetic probe containing deoxyinosine.Proceedings of the National Academy of Sciences (USA) 82, 1931–5.

    Google Scholar 

  • Tatemoto, K. (1982) Neuropeptide Y; complete amino acid sequence of the brain peptide.Proceedings of the National Academy of Sciences (USA) 79, 5485–9.

    Google Scholar 

  • Tatemoto, K. &Mutt, V. (1981) Isolation and characterization of the intestinal peptide porcine PHI (PHI-27), a new member of the glucagon-secretin family.Proceedings of the National Academy of Sciences (USA) 78, 6603–7.

    Google Scholar 

  • Tatemoto, K., Carlquist, M. &Mutt, V. (1982) Neuropeptide Y, a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide.Nature 296, 659–60.

    Google Scholar 

  • Tatemoto, K., Rökaeus, A., Jörnvall, H., Mcdonald, T. J. &Mutt, V. (1983) Galanin — a novel biologically active peptide from porcine intestine.FEBS Letters 164, 124–8.

    Google Scholar 

  • Thureson-Klein, Å. &Klein, R. L. (1990) Exocytosis from neuronal large dense-cored vesicles.International Review of Cytology 121, 67–126.

    Google Scholar 

  • Tuchscherer, M. M. &Seybold, V. S. (1989) A quantitative study of the coexistence of peptides in varicosities within the superficial laminae of the dorsal horn of the rat spinal cord.Journal of Neuroscience 9, 195–205.

    Google Scholar 

  • Ulfhake, B., Arvidsson, U., Cullheim, S., Hökfelt, T. &Visser, T. J. (1987) Thyrotropin-releasing hormone (TRH)-immunoreactive boutons and nerve cell bodies in the dorsal horn of the cat L7 spinal cord.Neuroscience Letters 73, 3–8.

    Google Scholar 

  • Verge, V. M. K., Xu, X.-J., Langel, Ü., Hökfelt, T., Wiesenfeld-Hallin, Z. &Bartfai, T. (1993) Evidence for endogenous inhibition of autotomy by galanin in the rat after sciatic nerve section: demonstrated by chronic intrathecal infusion of a high affinity galanin receptor antagonist.Neuroscience Letters 149, 193–7.

    Google Scholar 

  • Verge, V. M. K., Wiesenfeld-Hallin, Z. &Hökfelt, T. (1993) Cholecystokinin in mammalian primary sensory neurons and spinal cord:in situ hybridization studies on rat and monkey spinal ganglia.European Journal of Neuroscience, in press.

  • Villar, M. J., Cortés, R., Theodorsson, E., Wiesenfeld-Hallin, Z., Schalling, M., Fahrenkrug, J., Emson, P. C. &Hökfelt, T. (1989) Neuropeptide expression in rat dorsal root ganglion cells and spinal cord after peripheral nerve injury with special reference to galanin.Neuroscience 33, 587–604.

    Google Scholar 

  • Villar, M. J., Wiesenfeld-Hallin, Z., Xu, X.-J., Theodorsson, E., Emson, P. C. &Hökfelt, T. (1991) Further studies on galanin-, substance P-, and CGRP-like immunoreactivities in primary sensory neurons and spinal cord: effects of dorsal rhizotomies and sciatic nerve lesions.Experimental Neurology 112, 29–39.

    Google Scholar 

  • Vincent, S. R., Hökfelt, T., Christensson, I. &Terenius, L. (1982) Dynorphin-immunoreactive neurons in the central nervous system of the rat.Neuroscience Letters 33, 185–90.

    Google Scholar 

  • Visser, T. J., Klootwijk, W., Doctor, R. &Henneman, G. (1977) A different approach to the radioimmunoassay of thyrotropin-releasing hormone. InRadioimmunoassay and related procedures in medicine, pp. 469–77. Vienna: National Atomic Energy Agency.

    Google Scholar 

  • Wakisaka, S., Kajander, K. C. &Bennett, G. J. (1991) Increased neuropeptide (NPY)-like immunoreactivity in rat sensory neurons following peripheral axotomy.Neuroscience Letters 124, 200–3.

    Google Scholar 

  • Wall, P. D. &Woolf, C. J. (1984) Muscle but not cutaneous C-afferent input procedures prolonged increases in the excitability of the flexion reflex in the rat.Journal of Physiology 356, 443–58.

    Google Scholar 

  • Wall, P. D., Devor, M., Inbal, R., Scadding, J. W., Schonfield, D., Seltzer, Z. &Tomkiewiocz, M. M. (1979) Autotomy following peripheral nerve lesions: experimental anaesthesia dolorosa.Pain 7, 103–13.

    Google Scholar 

  • Wiesenfeld-Hallin, Z. &Lindblom, U. (1980) Behavioral and electrophysiological effects of various types of peripheral nerve lesions in the rat: a comparison of possible models for chronic pain.Pain 8, 285–98.

    Google Scholar 

  • Wiesenfeld-Hallin, Z., Hökfelt, T., Lundberg, J. M., Forssmann, W. G., Reinecke, M., Tschopp, F. A. &Fischer, J. A. (1984) Immunoreactive calcitonin gene-related peptide and substance P co-exist in sensory neurons to the spinal cord and interact in spinal behavioural responses of the rat.Neuroscience Letters 52, 199–204.

    Google Scholar 

  • Wiesenfeld-Hallin, Z., Villar, M. J. &Hökfelt, T. (1989a) The effect of intrathecal galanin and C-fiber stimulation on the flexor reflex in the rat.Brain Research 486, 205–13.

    Google Scholar 

  • Wiesenfeld-Hallin, Z., Xu, X.-J., Villar, M. J. &Hökfelt, T. (1989b) The effect of intrathecal galanin on the flexor reflex in rat: increased depression after sciatic nerve section.Neuroscience Letters 105, 149–54.

    Google Scholar 

  • Wiesenfeld-Hallin, Z., Xu, X.-J., Hughes, J., Horwell, D. C. &Hökfelt, T. (1990a) PD134308, a selective antagonist of cholecystokinin type-B receptor, enhances the analgesic effect of morphine and synergistically interacts with intrathecal galanin to depress spinal nociceptive reflexes.Proceedings of the National Academy of Sciences (USA) 87, 7105–9.

    Google Scholar 

  • Wiesenfeld-Hallin, Z., Xu, X.-J., Håkanson, R., Feng, D. M. &Folkers, K. (1990b) Plasticity of peptidergic mediation of spinal reflex facilitation after peripheral nerve section.Neuroscience Letters 116, 293–8.

    Google Scholar 

  • Wiesenfeld-Hallin, Z., Xu, X.-J., Villar, M. J. &Hökfelt, T. (1990c) Intrathecal galanin potentiates the spinal analgesic effect of morphine: behavioural and electrophysiological studies.Neuroscience Letters 109, 217–21.

    Google Scholar 

  • Wiesenfeld-Hallin, Z., Bartfai, T. &Hökfelt, T. (1992a) Galanin in sensory neurons in the spinal cord.Frontiers in Neuroendocrinology 13, 319–43.

    Google Scholar 

  • Wiesenfeld-Hallin, Z., Xu, X.-J., Langel, Ü., Bedecs, K., Hökfelt, T. &Bartfai, T. (1992b) Galanin-mediated control of pain: enhanced role after nerve injury.Proceedings of the National Academy of Sciences (USA) 89, 3334–7.

    Google Scholar 

  • Woolf, C. J. &Wiesenfeld-Hallin, Z. (1986) Substance P and calcitonin gene-related peptide synergistically modulate the gain of the nociceptive flexor withdrawal reflex in the rat.Neuroscience Letters 66, 226–30.

    Google Scholar 

  • Woolf, C. J., Shortland, P. &Coggeshall, R. E. (1992) Peripheral nerve injury triggers central sprouting of myelinated afferents.Nature 355, 75–9.

    Google Scholar 

  • Xu, X. -J., Wiesenfeld-Hallin, Z., Villar, M. J. &Hökfelt, T. (1989) Intrathecal galanin antagonizes the facilitatory effect of substance P on the nociceptive flexor reflex.Acta Physiologica Scandinavica 137, 463–4.

    Google Scholar 

  • Xu, X.-J., Wiesenfeld-Hallin, Z., Villar, M. J., Fahrenkrug, J., &Hökfelt, T. (1990) On the role of galanin, substance P and other neuropeptides in primary sensory neurons of the rat: studies on spinal reflex excitability and peripheral axotomy.European Journal of Neuroscience 2, 733–43.

    Google Scholar 

  • Yaksh, T. L., Jessell, T. M., Gamse, R., Mudge, A. W. &Leeman, S. E. (1980) Intrathecal morphine inhibits substance P release from mammalian spinal cordin vivo.Nature 286, 155–7.

    Google Scholar 

  • Yaksh, T. L., Michener, S. R., Bailey, J. E., Harty, G. J., Lucas, D. L., Nelson, D. K., Roddy, D. R. &Go, L. W. (1988) Survey of distribution of substance P, vasoactive intestinal polypeptide cholecystokinin, neurotensin, met-enkephalin, bombesin and PHI in the spinal cord of cat, dog, sloth and monkey.Peptides 9, 357–72.

    Google Scholar 

  • Yanagisawa, M., Yagi, N., Otsuka, M., Yanaihara, C. &Yanaihara, N. (1986) Inhibitory effects of galanin on the isolated spinal cord of the newborn rat.Neuroscience Letters 70, 278–82.

    Google Scholar 

  • Young, W. S., III (1990)In situ hybridization histochemistry. InHandbook of Chemical Neuroanatomy, Vol. 8, Analysis of Neuronal Microcircuits and Synaptic Interactions (edited byBjörklund, A., Hökfelt, T., Wouterlood, F. G. &Van Den Pol, A. N.) pp. 481–512. Amsterdam: Elsevier.

    Google Scholar 

  • Zamboni, L. &De Martino, C. (1967) Buffered picric acid formaldehyde: a new rapid fixative for electron microscopy.Journal of Cell Biology 148A, 35 (abstract).

    Google Scholar 

  • Zhang, X., Gong, J., Elde, R. &Hökfelt, T. (1992) Effect of peripheral nerve cut on peptides in dorsal root ganglia and the spinal cord of monkey with special reference to galanin.Society for Neuroscience Abstracts 18, 133.

    Google Scholar 

  • Zieglgänsberger, W. &Tulloch, I. F. (1979) Effects of substance P on neurones in the dorsal horn of the spinal cord of the cat.Brain Research 166, 273–82.

    Google Scholar 

  • Zouaoui, D., Benoliel, J. J., Conrath, M. &Cesselin, F. (1990) Cholecystokinin-like immunoreactivity in the dorsal horn of the rat spinal cord: an attempt to analyse contradictory results between immunocytochemistry and radioimmunoassay.Neuropeptides 17, 177–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Ju, G., Elde, R. et al. Effect of peripheral nerve cut on neuropeptides in dorsal root ganglia and the spinal cord of monkey with special reference to galanin. J Neurocytol 22, 342–381 (1993). https://doi.org/10.1007/BF01195558

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01195558

Keywords

Navigation