Skip to main content
Log in

Solving stochastic structural optimization problems by RSM-based stochastic approximation methods — gradient estimation in case of intermediate variables

  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

Reliability-based structural optimization methods use mostly the following basic design criteria: I) Minimum weight (volume or costs) and II) high strength of the structure. Since several parameters of the structure, e.g. material parameters, loads, manufacturing errors, are not given, fixed quantities, but random variables having a certain probability distribution P,stochastic optimization problems result from criteria (I), (II), which can be represented by

$$\mathop {\min }\limits_{x \in D} F(x)withF(x): = Ef(\omega ,x).$$
((1))

Here,f=f(ω,x) is a function on ℛr depending on a random element ω, “E” denotes the expectation operator andD is a given closed, convex subset of ℛr. Stochastic approximation methods are considered for solving (1), where gradient estimators are obtained by means of the response surface methodology (RSM). Moreover, improvements of the RSM-gradient estimator by using “intermediate” or “intervening” variables are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barthelemy JF, Haftka R (1993) Recent advances in approximation concepts for optimum structural design. In: Rozvany G (ed.) Optimization of large structural design, Kluwer Acad. Publ., Dordrecht

    Google Scholar 

  2. Biles WE, Swain JJ (1979) Mathematical programming and the optimization of computer simulations. Mathematical Programming Study 11:189–207

    Google Scholar 

  3. Bouleau N et al. (1986) Une méthode numérique adaptée au calcul probabiliste des structures. J. Theoretical and Applied Mechanics 5 (5):781–801

    Google Scholar 

  4. Box GE, Draper NR (1987) Empirical model-building and response surfaces. J. Wiley, New York-Chichester-Brisbane-Toronto-Singapore

    Google Scholar 

  5. Bucher CG, Bourgund U (1990) A fast and efficient response surface approach for structural reliability problems. Structural Safety 7:57–66

    Google Scholar 

  6. Cornell CA (1967) Bounds on the reliability of structural systems. J. Struct. Div., ASCE 93:171–200

    Google Scholar 

  7. Ditlevsen O (1979) Narrow reliability bounds for structural systems. J. Struct. Mech. 7:453–472

    Google Scholar 

  8. Duysinx P, Zhang WH, Fleury C (1995) A new separable approximation scheme for topological problems and optimization problems characterized by a large number of design variables. In: Olhoff N, Rozvany GIN (eds.) WCSMO-1, Structural and multidisciplinary optimization, Pergamon, Elsevier Science, Oxford-New York-Tokyo, pp. 1–8

    Google Scholar 

  9. Ermoliev Yu (1988) Stochastic quasigradient methods. In: Ermoliev Yu, Wets J-B (eds.) Numerical techniques for stochastic optimization, Springer-Verlag, Berlin-Heidelberg-New York, pp. 141–185

    Google Scholar 

  10. Eschenauer HA et al. (1991) Engineering optimization in design processes. Lecture Notes in Engineering, Vol. 63, Springer-Verlag, Berlin

    Google Scholar 

  11. Fleury C (1989) First and second order convex approximation strategies in structural optimization. Structural Optimization 1:3–10

    Google Scholar 

  12. Fleury C, Braibant V (1986) Structural optimization: A new dual method using mixed variables. Int. J. Num. Meth. Eng. 23:409–428

    Google Scholar 

  13. Fleury C (1989) Efficient approximation concepts using second order information. Int. J. Num. Meth. Eng. 28:2041–2058

    Google Scholar 

  14. Galambos J (1977) Bonferroni inequalities. The Annals of Probability 5:577–581

    Google Scholar 

  15. Jacobsen Sh H, Schruben Lee W (1989) Techniques for simulation response optimization. Operations Research Letters 8:1–9

    Google Scholar 

  16. Kounias EG (1968) Bounds for the probability of a union, with applications. The Annals of Math. Stat. 39:2154–2158

    Google Scholar 

  17. Marti K (1990) Stochastic optimization methods in structural mechanics. ZAMM 70:T742-T745

    Google Scholar 

  18. Marti K (1992) Semi-stochastic approximation by the response surface methodology (RSM). Optimization 25:209–230

    Google Scholar 

  19. Marti K (1992) Stochastic optimization in structural design. ZAMM 72:T452-T464

    Google Scholar 

  20. Marti K (1996) Stochastic optimization methods in engineering. In: Dolezal J, Fidler J (eds.) System modelling and optimization, Chapman and Hall, London, pp. 75–87

    Google Scholar 

  21. Marti K (1997) Approximation and derivatives of probabilities of survival in structural analysis and design. Structural Optimization 13(4):230–243

    Google Scholar 

  22. Myers RH (1971) Response surface methodology. Allyn and Bacon, Boston

    Google Scholar 

  23. Nguyen VH, Strodiot JJ, Fleury C (1987) A mathematical convergence analysis of the convex linearization method for engineering design problems. Engineering Optim. 11:195–216

    Google Scholar 

  24. Prased B (1983) Explizit constraint approximation forms in structural optimization. Part 1: analysis and projections. Computer Methods in Appl. Mech. and Eng. 40:1–26

    Google Scholar 

  25. Prasad B (1984) Novel concepts for constraint treatments and approximations in efficient structural synthesis. AIAA Journal 22 (7):957–966

    Google Scholar 

  26. Rackwitz R, Thoft-Christensen P (eds.) (1992) Reliability and optimization of structural systems '91. Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  27. Reinhart J (1997) Stochastische Optimierung von Faserkunststoffverbundplatten; Adaptive stochastische Approximationsverfahren auf der Basis der Response-Surface-Methode. VDI-Verlag, Düsseldorf

    Google Scholar 

  28. Schittkowski K, Zillober C (1995) Sequential convex programming methods. In: Marti K, Kall P (eds.) Stochastic programming: Numerical techniques and engineering applications, LNEMS Vol. 423, Springer-Verlag, Berlin-Heidelberg-New York-London, pp. 123–141

    Google Scholar 

  29. Schmit LA, Miura H (1976) Approximation concepts for efficient structural synhesis. NASA CR-2552

  30. Schmit LA, Farshi B (1974) Some approximation concepts for structural synthesis. AIAA J. 12 (5):692–699

    Google Scholar 

  31. Schoofs AJG (1987) Experimental design and structural optimization. Dissertation, TU Eindhoven, Netherlands

    Google Scholar 

  32. Svanberg K (1987) The method of moving asymptotes — a new method for structural optimization Int. J. for Num. Math. In Eng. 24:359–373

    Google Scholar 

  33. Svanberg K (1993) The method of moving asymptotes (MMA) with some extensions. In: Rozvany G (ed.) Optimization of large structural systems, Vol. 1, Kluwer Acad. Publ., Dordrecht, pp. 555–566

    Google Scholar 

  34. Svanberg K (1995) A globally convergent version of MMA without linesearch. In: Olhoff N, Rozvany GIN (eds.) WCSMO-1, Structural and multidisciplinary optimization, Pergamon, Elsevier Science, Oxford-New York-Tokyo, pp. 9–16

    Google Scholar 

  35. Vanderplaats GN, Thomas HL (1991) The state of the art of approximation concepts in structural optimization. In: Rozvany G (ed.) Optimization of large structural systems, Berchtesgaden, Sept. 23–Oct. 4, 1991, Essen University, Essen, Vol. 1, pp. 109–121

    Google Scholar 

  36. Wasan MT (1969) Stochastic approximation. Cambridge University Press, Cambridge

    Google Scholar 

  37. Zhang WH, Fleury C (1994) Recent advancs in convex approximation methods for structural Optimization. In: Toppings BHV, Papadrakakis M (eds.) Advances in structural optimization. Proceed. 2nd Int. Conf. on Comput. Structures Techn., Athens, Aug. 30–Sept. 1, 1994, CIVIL- COMP Press, Edinburgh, pp. 83–90

    Google Scholar 

  38. Zhang WH, Fleury C, Duysinx P (1995) A generalized method of moving asymptotes (GMMA) including equality constraints. In: Olhoff N, Rozvany GIN (eds.) WCSMO-1, Structural and multidisciplinary optimization, Pergamon, Elsevier Science, Oxford-New York-Tokyo, pp. 53–58

    Google Scholar 

  39. Zillober C (1993) A globally convergent version of the method of moving asymptotes. Structural optimization 6:166–174

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marti, K. Solving stochastic structural optimization problems by RSM-based stochastic approximation methods — gradient estimation in case of intermediate variables. Mathematical Methods of Operations Research 46, 409–434 (1997). https://doi.org/10.1007/BF01194863

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01194863

Key words

Navigation