Skip to main content
Log in

Topography and ultrastructure of commissural interneurons that may establish reciprocal inhibitory connections of the Mauthner axons in the spinal cord of the tench,Tinca tinca L.

  • Published:
Journal of Neurocytology

Summary

This study was made to identify the inhibitory interneurons belonging to the spinal circuitry activated by the Mauthner axons in the tench (Tinea tinea L.). The histological investigations were focused on a segmentai pair of commissural interneurons that were reconstructedin toto from their distinguishing topographical and ultrastructural features. These features are: (a) the adendritic soma located 100–150 μm dorsal to the central canal; (b) the first node of Ranvier which is precommissural and connected to the ipsilateral Mauthner axon via gap junction; (c) the second node of Ranvier, from which two first-order branches arise postcommissurally each supplying roughly the rostral and caudal half of the contralateral spinal cord segment; (d) their second-order branches, which arise at intervals that correspond closely to those of the Mauthner axon collaterals; (e) the postsynaptic targets of the second-order branches, which are exclusively all the motoneurons and interneurons innervated by the contralateral Mauthner axon; (f) the axon terminals of these branches, which contain F-type vesicles, form Gray type-2 synapses, and abut either on the initial segment or on the first node of Ranvier of the target neurons. Thus, it appears that this segmental interneuron has all the appropriate features that could provide the structural basis for the reciprocal fast-acting inhibitory coupling underlying the startle reflex elicited by the Mauthner neurons in response to auditory stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, P., Eccles, J. C. &Voorhoeve, P. E. (1963) Inhibitory synapses on somas of Purkinje cells in the cerebellum.Nature 199, 655–6.

    Google Scholar 

  • Auerbach, A. A. &Bennett, M. V. L. (1969) Chemically mediated transmission of a giant fibre synapse in the central nervous system of a vertebrate.Journal of General Physiology 53, 183–237.

    Google Scholar 

  • Barets, A. (1961) Contribution a l'étude des systèmes moteurs ‘lents’ et ‘rapides’ du muscle latéral des téléostéens.Archives d'Anatomie Microscopique et de Morphologie Expérimentale 50, 91–187.

    Google Scholar 

  • Baumann, I. R. &Yasargil, G. M. (1979) Action of strychnine on a postsynaptic inhibition in tench spinal cord.Experientia 35, 916.

    Google Scholar 

  • Bennett, M. V. L. (1977) Electric transmission: a functional analysis and comparison to chemical transmission. InHandbook of Physiology, the Nervous System (edited byBrookhart, I. J. M. &Mountcastle, V. B.) pp. 357–416. Bethesda, MD: American Physiological Society.

    Google Scholar 

  • Celio, M. R., Gray, E. G. &Yasargil, G. M. (1976) Ultrastructure of the Mauthner axon collateral and its synapses in the goldfish spinal cord.Journal of Neurocytology 8, 19–29.

    Google Scholar 

  • Cobb, J. L. S., Fraser, K. &Heitler, W. J. (1985) Comparative ultrastructure of identified electrical synapses in the crayfish.Journal of Physiology 367, 87.

    Google Scholar 

  • Diamond, J. (1971) The Mauthner cell. InFish Physiology (edited byHoar, W. S. &Randall, D. J.) Vol.5, pp. 265–346. New York: Academic Press.

    Google Scholar 

  • Diamond, J. &Yasargil, G. M. (1969) Synaptic function in fish spinal cord: dendritic integration.Progress in Brain Research 31, 201–9.

    Google Scholar 

  • Emre, M. (1983) Histology and electrophysiology of a fast-operating inhibitory pathway in the spinal cord of the Tench (Tinea tinea L.). MD Thesis, University of Zürich.

  • Emre, M., Saydam, B. &Yasargil, G. M. (1983) Morphological correlates of spinal pathways mediating the Mauthner-cell-induced excitation and inhibition of spinal motoneurons.Experientia 39, 632.

    Google Scholar 

  • Faber, D. S. &Korn, H. (1978) Electrophysiology of the Mauthner Cell: Basic properties, synaptic mechanisms and associated networks. InNeurobiology of the Mauthner cell (edited byFaber, D. S. &Korn, H.) pp. 47–131. New York: Raven Press.

    Google Scholar 

  • Fetcho, J. R. &Faber, D. S. (1987) Spinal interneurons that may mediate the crossed inhibition during a Mauthner-initiated escape behaviour in goldfish.Society of Neuroscience Abstracts 13, 823.

    Google Scholar 

  • Fetcho, J. R. &Faber, D. S. (1988) Identification of motoneurons and interneurons in the spinal network for escapes initiated by the Mauthner cell in goldfish.Journal of Neurosciences 8, 4192–213.

    Google Scholar 

  • Furukawa, T. &Furshpan, E. J. (1963) Two inhibitory mechanisms in the Mauthner neurons of goldfish.Journal of Neurophysiology 26, 140–76.

    Google Scholar 

  • Gray, E. G. (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex. An electron microscope study.Journal of Anatomy 93, 420–33.

    Google Scholar 

  • Gray, E. G. (1969) Round and flat synaptic vesicles in the fish central nervous system. InSymposium of the International Society for Cell Biology (edited byS. H. Barondes) Vol. 8, pp. 211–27. New York: Academic Press.

    Google Scholar 

  • Greeff, N. G. (1977) Passive elektrische Eigenschaften einer markhaltigen Riesennervenfaser im Zentralnervensystem (Mauthner-Axon der Schleie). MD Thesis, University of Zürich.

  • Hackett, J. T. &Faber, D. S. (1983) Mauthner axon networks mediating supra-spinal components of the startle response in the goldfish.Neuroscience 8, 317–33.

    Google Scholar 

  • Highstein, S. M. &Bennett, M. V. L. (1975) Fatigue and recovery of transmission at the Mauthner fibre-giant fibre synapse of the hatchet fish.Brain Research 98, 229–42.

    Google Scholar 

  • Horridge, A. (1961) The organization of the primitive central nervous system as suggested by examples of inhibition and the structure of neuropile. InNervous Inhibition (edited byFlorey, E.) pp. 395–409. Oxford: Pergamon Press.

    Google Scholar 

  • Korn, H., Triller, A. &Faber, D. S. (1978) Structural correlates of recurrent collateral interneurons producing both electrical and chemical inhibitions of the Mauthner cell.Proceedings of the Royal Society of London 202, 533–8.

    Google Scholar 

  • Moor, H. &Muehlethaler, K. (1963) Fine structure in frozen-etched yeast cells.Journal of Cell Biology 17, 609–28.

    Google Scholar 

  • Mugnaini, E. &Maler, L. (1987) Cytology and immunochemistry of the nucleus of the lateral line lobe in the electric fishGnathonemus petersii (Mormyridae): evidence suggesting that GABAergic synapses mediate an inhibitory corollary discharge.Synapse 1, 32–56.

    Google Scholar 

  • Peters, A., Palay, S. L. &Webster, H. deF. (1976) The fine structure of the nervous system: The neurons and supporting cells. Philadelphia: Saunders.

    Google Scholar 

  • Roberts, A. &Clarke, J. D. (1982) The neuroanatomy of an amphibian embryo spinal cord.Philosophical Transactions of the Royal Society of London B296, 192–212.

    Google Scholar 

  • Rossi, A. &Palombi, F. (1969) A neurofibrillar body in the perikaryon of nervus terminalis ganglion cells in teleosts.Zeitschrift für Zellforschung und mikroskopische Anatomie 93, 395–403.

    Google Scholar 

  • Sotelo, C. &Palay, S. L. (1968) The fine structure of the lateral vestibular nucleus in the rat. I. Neurons and neuroglial cells.Journal of Cell Biology 36, 151–79.

    Google Scholar 

  • Stewart, W. W. (1978) Functional connections between cells as revealed by dye-coupling with highly fluorescent naphtalamide tracer.Cell 14, 741–59.

    Google Scholar 

  • Stefanelli, A. (1951) The Mauthnerial apparatus in the Ichthyopsida; its nature and function and correlated problems of neurohistogenesis.Quarterly Review of Biology 26, 17–34.

    Google Scholar 

  • Stolinski, C., Breathnach, A. S., Martin, B., Thomas, P. K., King, R. H. M. &Gabriel, G. (1981) Associated particle aggregates in juxtaparanodal axolemma and adaxonal Schwann cell membrane of rat peripheral nerve.Journal of Neurocytology 10, 679–91.

    Google Scholar 

  • Tasaki, I. (1953)Nervous transmission. Springfield, Illinois: Charles C. Thomas, pp. 81–85.

    Google Scholar 

  • Uchizono, K. (1965) Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat.Nature 207, 642–43.

    Google Scholar 

  • Yasargil, G. M. &Diamond, J. (1968) Startle-response in teleost fish: an elementary circuit for neural discrimination.Nature 220, 241–3.

    Google Scholar 

  • Yasargil, G. M. &Sandri, C. (1987) Morphology of the Mauthner axon inhibitory system in tench (Tinea tinea L.) spinal cord.Neuroscience Letters 81, 63–8.

    Google Scholar 

  • Yasargil, G. M., Akert, K. &Sandri, C. (1986) Further morphological (freeze-fracture) evidence for an impulse generating function of Mauthner axon collaterals in the tench (Tinea tinea L.) spinal cord.Neuroscience Letters 71, 43–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yasargil, G.M., Sandri, C. Topography and ultrastructure of commissural interneurons that may establish reciprocal inhibitory connections of the Mauthner axons in the spinal cord of the tench,Tinca tinca L. . J Neurocytol 19, 111–126 (1990). https://doi.org/10.1007/BF01188443

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01188443

Keywords

Navigation