Skip to main content
Log in

Ribbon synapses of the mammalian retina contain two types of synaptic bodies-ribbons and spheres

  • Published:
Journal of Neurocytology

Summary

The present paper reports that the synaptic bodies of the retinal ribbon synapses in rat, guinea pig, golden hamster and mouse are a heterogeneous population of organelles. In addition to the well-known synaptic ribbonssensu stricto which consist of a platelike electron-dense central structure surrounded by electron-lucent synaptic vesicles, there are what is termed synaptic spheres, in which the core is not platelike, but round to oval. In rat retinae procured at day, ribbons outnumbered spheres by a factor of 4. At night spheres were not seen in photoreceptor cells. Spheres, like ribbons, may lie some distance from the synaptic site, perhaps indicating transit from their site of origin to the synapse. At night ribbons are longer than at daytime. In addition to the previously described connecting stalks between synaptic vesicles and the electron-dense ribbons, the presence of filamentous stalks between adjacent synaptic vesicles is described. The latter stalks, depending on their presence or absence, may influence the position of the synaptic vesicles in relation to the synaptic body and/or the presynaptic membrane. It is concluded that the plasticity of retinal synapses cannot be fully appreciated unless the temporal changes of ribbons, spheres and the connecting stalks are taken into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, H. &Yamamoto, T. Y. (1984) Diurnal changes in synaptic ribbons of rod cells of the turtle.Journal of Ultrastructure Research 86, 246–51.

    PubMed  Google Scholar 

  • Allen, R. A. (1969) The retinal bipolar cells and their synapses in the inner plexiform layer.University of California Los Angeles Forum in Medical Sciences 8, 101–43.

    Google Scholar 

  • Arstila, A. U. (1967) Electron microscopic studies on the structure and histochemistry of the pineal gland of the rat.Supplement and Neuroendocrinology 2, 1–67.

    Google Scholar 

  • Bunt, A. H. (1971) Enzymatic digestion of synaptic ribbons in amphibian retinal photoreceptors.Brain Research 25, 571–7.

    PubMed  Google Scholar 

  • De Robertis, E. R. &Franchi, C. M. (1956) Electron microscope observations on synaptic vesicles in synapses of the retinal rods and cones.Journal of Biophysical and Biochemical Cytology 2, 307–18.

    PubMed  Google Scholar 

  • Dowling, J. E. &Boycott, B. B. (1966) Organization of the primate retina: electron microscopy.Proceedings of the Royal Society of London; B: Biological Sciences 166, 80–111.

    Google Scholar 

  • Fine, B. S. (1962) Synaptic lamellas in the human retina: an electron microscopic study.Journal of Neuropathology and Experimental Neurology 22, 255–62.

    Google Scholar 

  • Foos, R. Y., Miyamasu, W. &Yamada, E. (1969) Tridimensional study of an anomalous synaptic ribbon in human retina.Journal of Ultrastructure Research 26, 391–8.

    PubMed  Google Scholar 

  • Gray, E. G. &Pease, H. L. (1971) On understanding the organization of the retinal receptor synapses.Brain Research 35, 1–15.

    PubMed  Google Scholar 

  • GrÜn, G. (1980) Developmental dynamic in synaptic ribbons of retinal receptor cells (Tilapia, Xenopus).Cell and Tissue Research 207, 331–9.

    PubMed  Google Scholar 

  • Hebel, R. (1971) Entwicklung und Struktur der Retina und des Tapetum lucidum des Hundes.Ergebnisse der Anatomie und Entwicklungsgeschichte 45, 1–93.

    Google Scholar 

  • Karnovsky, M. J. (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy.Journal of Cell Biology 27, 137–8A.

    Google Scholar 

  • Khaledpour, C. &Vollrath, L. (1987) Evidence for the presence of two 24-h rhythms 180 ° out of phase in the pineal gland of male Pirbright-White guinea pigs as monitored by counting ‘synaptic’ ribbons and spherules.Experimental Brain Research 66, 185–90.

    Google Scholar 

  • Ladman, A. J. (1958) The fine structure of the rod-bipolar cell synapse in the retina of the albino rat.Journal of Biophysical and Biochemical Cytology 4, 459–65.

    PubMed  Google Scholar 

  • Martinez-Soriano, F., Welker, H. A. &Vollrath, L. (1984) Correlation of the number of pineal ‘synaptic’ ribbons and spherules with the level of serum melatonin over a 24-h period in male rabbits.Cell and Tissue Research 236, 555–60.

    PubMed  Google Scholar 

  • Matsumura, M., Okinami, S. &Ohkuma, M. (1981) Synaptic vesicle exocytosis in goldfish photoreceptor cells.Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie 215, 159–70.

    Google Scholar 

  • McArdle, C. B., Dowling, J. E. &Masland, R. H. (1977) Development of outer segments and synapses in the rabbit retina.Journal of Comparative Neurology 175, 253–74.

    Google Scholar 

  • McCartney, M. D. &Dickson, D. H. (1985) Photoreceptor synaptic ribbons: three-dimensional shape, orientation and diurnal (non) variation.Experimental Eye Research 41, 313–21.

    PubMed  Google Scholar 

  • McLaughlin, B. J. &Boykins, L. (1977) Ultrastructure of E-PTA stained synaptic ribbons in the chick retina.Journal of Neurobiology 8, 91–6.

    PubMed  Google Scholar 

  • Raviola, E. &Gilula, N. B. (1975) Intramembrane organization of specialized contacts in the outer plexiform layer of the retina.Journal of Cell Biology 65, 192–222.

    PubMed  Google Scholar 

  • Sattayasai, J. &Ehrlich, D. (1987) Morphology of quisqualate-induced neurotoxicity in the chicken retina.Investigative Ophthalmology and Visual Science 28, 106–17.

    PubMed  Google Scholar 

  • SjÖstrand, F. S. (1953) The ultrastructure of the inner segments of the retinal rods of the guinea-pig eye as revealed by electron microscopy.Journal of Cellular and Comparative Physiology 42, 45–70.

    Google Scholar 

  • SjÖstrand, F. S. (1958) Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by three-dimensional reconstructions from serial sections.Journal of Ultrastructure Research 2, 122–70.

    PubMed  Google Scholar 

  • Smelser, G. K., Ozanics, V., Rayborn, M. &Sagun, D. (1974) Retinal synaptogenesis in the primate.Investigative Ophthalmology and Visual Science 13, 340–62.

    Google Scholar 

  • Spadaro, A., De Simone, I. &Puzzolo, D. (1978) Ultrastructural data and chronobiological patterns of the synaptic ribbons in the outer plexiform layer in the retina of albino rats.Acta Anatomica 102, 365–73.

    PubMed  Google Scholar 

  • Usukura, J. &Yamada, E. (1987) Ultrastructure of the synaptic ribbons in photoreceptor cells ofRana catesbeiana revealed by freeze-etching and freeze-substitution.Cell and Tissue Research 247, 483–8.

    PubMed  Google Scholar 

  • Vollrath, L. (1981) The pineal organ. InHandbuch der mikroskopischen Anatomie des Menschen (edited by Oksche, A. & Vollrath, L.) Vol. VI/7, pp. 1–665. New York, Berlin, Heidelberg: Springer.

    Google Scholar 

  • Vollrath, L. (1986) Inverse behaviour of ‘synaptic’ ribbons and spherule numbers in the pineal gland of male guinea-pigs exposed to continuous illumination.Anatomy and Embryology 173, 349–54.

    PubMed  Google Scholar 

  • Vollrath, L., Schultz, R. L. &McMillan, P. J. (1983) ‘Synaptic’ ribbons and spherules of the guinea-pig pineal gland: inverse day/night differences in number.American Journal of Anatomy 168, 67–74.

    PubMed  Google Scholar 

  • Wersäll, J. &Bagger-Sjöbäck, D. (1974) Morphology of the vestibular sense organ. InHandbook of sensory physiology (edited by Kornhuber, H. H.) Vol. VI/1, pp. 123–170. New York, Berlin, Heidelberg: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vollrath, L., Meyer, A. & Buschmann, F. Ribbon synapses of the mammalian retina contain two types of synaptic bodies-ribbons and spheres. J Neurocytol 18, 115–120 (1989). https://doi.org/10.1007/BF01188430

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01188430

Keywords

Navigation