Skip to main content
Log in

Light and electron microscopic immunocytochemical analysis of the noradrenaline innervation of the rat visual cortex

  • Published:
Journal of Neurocytology

Summary

Immunocytochemistry with an antiserum against noradrenaline was used to examine the organization and morphology of noradrenergic axons in the rat visual cortex. Observations with the light microscope confirmed earlier reports concerning the distribution pattern of noradrenergic fibres, and provided some further clues about their intracortical organization. Particularly striking was the finding of fibres which followed an oscillating course within the boundaries of layers II–IV as they ran in the mediolateral direction. Examination of the morphological characteristics of noradrenaline-containing axon terminals in serial ultrathin sections has provided further evidence that the vast majority (87.6%) form conventional synapses in the visual and frontoparietal cortex, and has given clues about the postsynaptic elements involved in these synaptic contacts; they are, in decreasing frequency, spines, dendritic shafts of various diameters, and pyramidal and non-pyramidal somata. In addition, a few labelled terminals were visualized in close association with intracerebral capillaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beaudet, A. &Descarries, L. (1978) The Monoamine Innervation Of Rat Cerebral Cortex: Synaptic And Non-Synaptic Axon Terminals.Neuroscience 3, 851–60.

    PubMed  Google Scholar 

  • Beaudet, A. &Descarries, L. (1984) Fine structure of monoamine axon terminals in cerebral cortex. In Monoamine Innervation of Cerebral Cortex (edited by Descarries, L., Reader, T. R. & Jasper, H. H.), pp. 77–93. New York: Alan R. Liss.

    Google Scholar 

  • Buijs, R. M. (1982) The ultrastructural localization of amines, amino acids and peptides in the brain.Progress in Brain Research 55, 167–83.

    PubMed  Google Scholar 

  • Caviness, V. S., Jr (1982) Development of neocortical afferent systems: Studies in the reeler mouse.Neurosciences Research Program Bulletin 20, 560–9.

    PubMed  Google Scholar 

  • Caviness, V. S., Jr &Korde, M. G. (1981) Monoaminergic afferents to the neocortex: A developmental histo fluorescence study in normal and reeler mouse embryos.Brain Research 209, 1–9.

    PubMed  Google Scholar 

  • Descarries, L. &Lapierre, Y. (1973) Noradrenergic axon terminals in the cerebral cortex of the rat. I. Radioautographic visualization after topical application of DL-[3H]norepinephrine.Brain Research 51, 141–60.

    PubMed  Google Scholar 

  • Descarries, L., Watkins, L. C. &Lapierre, Y. (1977) Noradrenergic axon terminals in the cerebral cortex of rat. III. Topometric ultrastructural analysis.Brain Research 133, 197–222.

    PubMed  Google Scholar 

  • Fuxe, K., Hamberger, B. &HÖkfelt, T. (1968) Distribution of noradrenaline nerve terminals in cortical areas of the rat.Brain Research 8, 125–31.

    PubMed  Google Scholar 

  • Geffard, M., Patel, S., Dulluc, J. &Rock, A.-M. (1986) Specific detection of noradrenaline in the rat brain by using antibodies.Brain Research 363, 395–400.

    PubMed  Google Scholar 

  • Groves, P. M. (1980) Synaptic endings and their postsynaptic targets in neostriatum. Synaptic specializations revealed from analysis of serial sections.Proceedings of the National Academy of Sciences USA 77, 6926–9.

    Google Scholar 

  • Groves, P. M. &Wilson, C. J. (1980) Monoaminergic presynaptic axons and dendrites in rat locus coeruleus seen in reconstructions of serial sections.Journal of Comparative Neurology 193, 853–62.

    PubMed  Google Scholar 

  • Itakura, T., Kasamatsu, T. &Pettigrew, J. D. (1981) Norepinephrine-containing terminals in kitten visual cortex: Laminar distribution and ultrastructure.Neuroscience 6, 159–75.

    PubMed  Google Scholar 

  • Koda, L. Y. &Bloom, F. E. (1977) A light and electron microscopic study of noradrenergic terminals in the rat dentate gyrus.Brain Research 120, 327–35.

    PubMed  Google Scholar 

  • KÖnig, N., Valat, J., Fulcrand, J. &Marty, R. (1977) The time of origin of Cajal-Retzius cells in the rat temporal cortex. An autoradiographic study.Neuroscience Letters 4, 21–6.

    Google Scholar 

  • Krieg, W. G. S. (1946) Connections of the cerebral cortex. I. The albino rat. A. Topography of the cortical areas.Journal of Comparative Neurology 84, 221–76.

    Google Scholar 

  • Kristt, D. A. (1979) Development of neocortical circuitry: Quantitative ultrastructural analysis of putative monoaminergic synapses.Brain Research 178, 69–88.

    PubMed  Google Scholar 

  • Levitt, P. &Moore, R. Y. (1978) Noradrenaline neuron innervation of the neocortex in the rat.Brain Research 139, 219–31.

    PubMed  Google Scholar 

  • Levitt, P. &Moore, R. Y. (1979) Development of the noradrenergic innervation of neocortex.Brain Research 162, 243–59.

    PubMed  Google Scholar 

  • Levitt, P., Rakic, P. &Goldman-Rakic, P. (1984a) Region-specific distribution of catecholamine afferents in primate cerebral cortex: A fluorescence histochemical analysis.Journal of Comparative Neurology 227, 23–36.

    PubMed  Google Scholar 

  • Levitt, P., Rakic, P. &Goldman-Rakic, P. S. (1984b) Comparative assessment of monoamine afferents in mammalian cerebral cortex. In Monoamine Innervation of Cerebral Cortex (edited byDescarries, L., Reader, T. R. &Jasper, H. H.), pp. 41–59. New York: Alan R. Liss.

    Google Scholar 

  • Lindvall, O. &Björklund, A. (1984) General organization of cortical monoamine systems. In Monoamine Innervation of Cerebral Cortex (edited byDescarries, L., Reader, T. R. &Jasper, H. H.), pp. 9–40. New York: Alan R. Liss.

    Google Scholar 

  • Loughlin, S. E., Foote, S. L. &Fallon, J. H. (1982) LOCUS coeruleus projections to cortex: Topography, morphology and collateralization.Brain Research Bulletin 9, 287–94.

    PubMed  Google Scholar 

  • Maeda, T., Kashiba, A., Tohyama, M., Itakura, T., Hori, M. &Shimizu, N. (1975) Demonstration of aminergic terminals and their contacts in rat brain by perfusion fixation with potassium permanganate.Abstract;10th International Congress of Anatomy, p. 142, Tokyo.

  • Marin-Padilla, M. (1978) Dual origin of the mammalian neocortex and evolution of the cortical plate.Anatomy and Embryology 152, 109–26.

    PubMed  Google Scholar 

  • Molliver, M. E., Grzanna, R., Lidov, H. G. W., Morrison, J. H. &Olschowka, J. A. (1982) Monoamine systems in the cerebral cortex. InCytochemicals Methods in Neuroanatomy (edited byChan-Palay, V. &Palay, S. L.), pp. 255–77. New York: Alan R. Liss.

    Google Scholar 

  • Molliver, M. E. &Kristt, D. A. (1975) The fine structural demonstration of monoaminergic synapses in immature rat neocortex.Neuroscience Letters 1, 305–10.

    Google Scholar 

  • Morrison, J. H., Foote, S. L., O'connor, D. &Bloom, F. E. (1982) Laminar, tangential and regional organization of the noradrenergic innervation of monkey cortex: Do-pamine-β-hydroxylase immunohistochemistry.Brain Research Bulletin 9, 309–19.

    PubMed  Google Scholar 

  • Morrison, J. H., Grzanna, R., Molliver, M. E. &Coyle, J. T. (1978) The distribution and orientation of noradrenergic fibers in neocortex of the rat: An immunofluorescence study.Journal of Comparative Neurology 181, 17–40.

    PubMed  Google Scholar 

  • Morrison, J. H. &Magistretti, P. J. (1983) Monoamines and peptides in cerebral cortex. Contrasting principles of cortical organization.Trends in Neurosciences 6, 146–51.

    Google Scholar 

  • Morrison, J. H., Molliver, M. E. &Grzanna, R. (1979) Noradrenergic innervation of cerebral cortex: Widespread effects of local cortical lesions.Science 205, 313–6.

    PubMed  Google Scholar 

  • Morrison, J. H., Molliver, M. E., Grzanna, R. &Coyle, J. T. (1981) The intracortical trajectory of the coeruleocortical projection in the rat: A tangentially organized cortical afferent.Neuroscience 6, 139–58.

    PubMed  Google Scholar 

  • Olschowka, J. A., Molliver, M. E., Grzanna, R., Rice, F. L. &Coyle, J. T. (1981) Ultrastructural demonstration of noradrenergic synapses in the rat central nervous system by dopamine-β-hydroxylase immunocytochemistry.Journal of Histochemistry and Cytochemistry 29, 271–80.

    PubMed  Google Scholar 

  • Ouimet, C. C., Patrick, R. L. &Ebner, F. F. (1981) An ultrastructural and biochemical analysis of norepinephrine-containing varicosities in the cerebral cortex of the turtle Pseudemys.Journal of Comparative Neurology 195, 289–304.

    PubMed  Google Scholar 

  • Papadopoulos, G. C., Parnavelas, J. G. &Buijs, R. M. (1987a) Monoaminergic fibers form conventional synapses in the cerebral cortex.Neuroscience Letters 76, 275–9.

    PubMed  Google Scholar 

  • Papadopoulos, G. C., Parnavelas, J. G. &Buijs, R. M. (1987b) Light and electron microscopic immunocytochemical analysis of the serotonin innervation of the rat visual cortex.Journal of Neurocytology 16, 883–92.

    PubMed  Google Scholar 

  • Parnavelas, J. G. &Edmunds, S. M. (1983) Further evidence that Retzius-Cajal cells transform to nonpyramidal neurons in the developing rat visual cortex.Journal of Neurocytology 12, 863–71.

    PubMed  Google Scholar 

  • Parnavelas, J. G. &Mcdonald, J. K. (1983) The cerebral cortex. InChemical Neuroanatomy (edited byEmson, P. C.), pp. 505–49. New York: Raven Press.

    Google Scholar 

  • Parnavelas, J. G., Moises, H. C. &Speciale, S. G. (1985) The monoaminergic innervation of the rat visual cortex.Proceedings of the Royal Society of London, Series B 23, 319–29.

    Google Scholar 

  • Parnavelas, J. G., Sullivan, K., Lieberman, A. R. &Webster, K. E. (1977) Neurons and their synaptic organization in the visual cortex of the rat. Electron microscopy of Golgi preparations.Cell and Tissue Research 183, 499–517.

    PubMed  Google Scholar 

  • Schlumpf, M., Shoemaker, W. J. &Bloom, F. E. (1980) Innervation of embryonic rat cerebral cortex by catecholamine-containing fibres.Journal of Comparative Neurology 192, 361–76.

    PubMed  Google Scholar 

  • Swanson, L. W., Connelly, M. A. &Hartman, B. K. (1977) Ultrastructural evidence for central monoaminergic innervation of blood vessels in the paraventricular nucleus of the hypothalamus.Brain Research 136, 166–73.

    PubMed  Google Scholar 

  • Swanson, L. W., Connelly, M. A. &Hartman, B. K. (1978) Further studies on the fine structure of the adrenergic innervation of the hypothalamus.Brain Research 151, 165–74.

    PubMed  Google Scholar 

  • Verney, C., Berger, B., Baulac, M., Helle, K. B. &Alvarez, C. (1984) Dopamine-β-hydroxylase-like immunoreactivity in the fetal cerebral cortex of the rat: noradrenergic ascending pathways and terminal fields.International Journal of Developmental Neuroscience 2, 491–503.

    Google Scholar 

  • Zecevic, N. R. &Molliver, M. E. (1978) The origin of monoaminergic innervation of immature rat neocortex: An ultrastructural analysis following lesions.Brain Research 150, 387–97.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papadopoulos, G.C., Parnavelas, J.G. & Buijs, R.M. Light and electron microscopic immunocytochemical analysis of the noradrenaline innervation of the rat visual cortex. J Neurocytol 18, 1–10 (1989). https://doi.org/10.1007/BF01188418

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01188418

Keywords

Navigation