Skip to main content
Log in

Temporal and spatial patterns of expression of laminin, chondroitin sulphate proteoglycan and HNK-1 immunoreactivity during regeneration in the goldfish optic nerve

  • Published:
Journal of Neurocytology

Summary

Current views suggest that the extracellular environment is critically important for successful axonal regeneration in the CNS. The goldfish optic nerve readily regenerates, indicating the presence of an environment that supports regeneration. An analysis of changes that occur during regeneration, in this model may help identify those molecules that contribute to a favourable environment for axonal regrowth. We examined the distribution and expression of two extracellular matrix molecules, laminin and chondroitin sulphate proteoglycan, and a carbohydrate epitope shared by a family of adhesion molecules (HNK-1), using immunocytochemical detection in sections from the normal adult goldfish optic nerve and in nerves from one hour to five months following optic nerve crush. We also usedin vitro preparations to determine if neurites in retinal explants could express these same molecules.

The linear distributions of laminin and chondroitin sulphate proteoglycan immunoreactivity in control optic nerves are co-extensive with the glia limitans, suggesting both are expressed by non-neuronal components surrounding the axon fascicles. Between one and three weeks postoperatively when axons elongate and reach their target, laminin and chondroitin sulphate proteoglycan immunoreactivity increases around the crush site and distally. At six weeks postoperatively the pattern of immunoreactivity has returned to normal. While the temporal pattern of changes in immunoreactivity is similar, the spatial pattern of these two extracellular proteins in the regenerating nerve differs. Chondroitin sulphate proteoglycan immunoreactivity is organized in discrete columns associated with regenerating axons while laminin immunoreactivity is more diffusely distributed. Examination of retinal explants reveals growing neurites express chondroitin sulphate proteoglycan but not laminin. Our results suggest that laminin is only associated with non-neuronal cells, while chondroitin sulphate proteoglycan is associated with axons as well as non-neuronal cells.

HNK-1 immunoreactivity is co-extensive with both the glia limitans and axon fascicles and is more extensively distributed in the intact nerve than either laminin or chondroitin sulphate proteoglycan immunoreactivity. In contrast to laminin and chondroitin sulphate proteoglycan, HNK-1 immunoreactivity is substantially decreased at the crush site within one week following optic nerve crush. HNK-1 immunoreactivity reappears through the crush site during the next several weeks, although non-immunoreactive regions, co-extensive with areas predominantly containing non-neuronal cells, persist both proximal and distal to the crush, up to six weeks postoperatively. The pattern suggests that HNK-1 epitope expression by these non-neuronal cells is decreased during axonal regeneration.

Our results show that each of these molecules is constitutively expressed with a unique distribution in the normal goldfish optic nerve and each exhibits different patterns of change during regeneration. It thus appears that each may contribute to modifications of the environment that supports axonal regeneration. Both neurons and non-neuronal cells contribute to these changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abo, T. &Balch, C. M. (1981) A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1).Journal of Immunology 127, 1024–9.

    Google Scholar 

  • Aguayo, A. J., David, S. &Bray, G. M. (1981) Influence of the glial environment on the elongation of axons after injury.Journal of Experimental Biology 95, 231–40.

    PubMed  Google Scholar 

  • Aquino, D. A., Margolis, R. U. &Margolis, R. K. (1984a) Immunocytochemical localization of a chondroitin sulfate proteoglycan in nervous tissue. I. Adult brain, retina, and peripheral nerve.Journal of Cell Biology 99, 1117–29.

    PubMed  Google Scholar 

  • Aquino, D. A., Margolis, R. J. &Margolis, R. K. (1984b) Immunocytochemical localization of a chondroitin sulfate proteoglycan in nervous tissue. II. Studies in developing brain.Journal of Cell Biology 99, 1130–9.

    PubMed  Google Scholar 

  • Ard, M. D. &Bunge, R. P. (1988) Heparan sulfate proteoglycan and laminin immunoreactivity on cultured astrocytes: relationship to differentiation and neurite growth.Journal of Neuroscience 8, 2844–58.

    PubMed  Google Scholar 

  • Attardi, D. G. &Sperry, R. W. (1963) Preferential selection of central pathways by regenerating optic fibres.Experimental Neurology 7, 46–94.

    PubMed  Google Scholar 

  • Baron Van Evercooren, A., Kleinman, H. K., Ohno, S., Marangos, P., Schwartz, J. P. &Dubois-Dalcq, M. (1982) Nerve growth factor, laminin, and fibronectin promote neurite growth in human fetal sensory ganglion cultures.Journal of Neuroscience Research 8, 179–93.

    PubMed  Google Scholar 

  • Battisti, W. P., Levin, B. E. &Murray, M. (1987) Norepinephrine in the interpeduncular nucleus of the rat: normal distribution and the effects of deafferentation.Brain Research 418, 287–300.

    PubMed  Google Scholar 

  • Battisti, W. P., Levitt, P., Schwartz, M., Shinar, Y. &Murray, M. (1991) Modifications in the molecular and cellular composition of goldfish optic nerve and during axonal regeneration.International Brain Research Organization Abstracts 3, 32.

    Google Scholar 

  • Bertolotto, A. &Magrasssi, M. L. (1984) Cellulose acetate electrophoresis of glycosaminoglycans in the central nervous system.Electrophoresis 5, 97–101.

    Google Scholar 

  • Bertolotto, A., Rocca, G. &Schiffer, D. (1990) Chondroitin 4-sulfate proteoglycan forms an extracellular network in human and rat central nervous system.Journal of the Neurological Sciences 100, 113–23.

    PubMed  Google Scholar 

  • Bjorklund, A. &Stenevi, U. (1984) Intracerebral neural implants: neuronal replacement and reconstruction of damaged circuitries.Annual Review of Neuroscience 7, 279–308.

    PubMed  Google Scholar 

  • Carbonetto, S. (1984) The extracellular matrix of the nervous system.Trends in Neuroscience 7, 382–7.

    Google Scholar 

  • Carri, N. G., Perris, R., Johansson, S. &Ebendal, T. (1988) Differential outgrowth of retinal neurites on purified extracellular matrix molecules.Journal of Neuroscience Research 19, 428–39.

    PubMed  Google Scholar 

  • Cohen, J., Burne, J. F., Winter, J. &Bartlett, P. (1986) Retinal ganglion cells lose response to laminin with maturation.Nature 322, 465–7.

    PubMed  Google Scholar 

  • Cohen, J., Burne, J. F., McKinlay, C. &Winter, J. (1987) The role of laminin and the laminin/fibronectin receptor complex in the outgrowth of retinal ganglion cell axons.Developmental Biology 122, 407–18.

    PubMed  Google Scholar 

  • Cotman, C. W., Nieto-Sampedro, M. &Harris, E. W. (1981) Synaptic replacement in the nervous system of adult vertebrates.Physiological Reviews 61, 684–782.

    PubMed  Google Scholar 

  • Coughlin, C. &Elam, J. S. (1989) Enhanced axonal transport of glycosaminoglycans in regenerating goldfish optic nerve.Brain Research 493, 326–30.

    PubMed  Google Scholar 

  • Crossin, K. L., Preito, A. L., Huffman, S., Jones, F. S. &Freidlander, D. R. (1990) Expression of adhesion molecules and the establishment of boundaries during embryonic and neural development.Experimental Neurology 109, 6–18.

    PubMed  Google Scholar 

  • Davis, G. E., Klier, F. G., Engvall, E., Cornbrooks, C., Varon, S. &Manthorpe, M. (1987) Association of laminin with heparan and chondroitin sulfate-bearing proteoglycans in neurite-promoting factor complexes from rat schwanoma cells.Neurochemistry Research 12, 909–21.

    Google Scholar 

  • Dow, K. E., Mirski, S. E. L., Roder, J. C. &Riopelle, R. J. (1988) Neuronal proteoglycans: biosynthesis and functional interaction with neuronsin vitro.Journal of Neuroscience 8, 3278–89.

    PubMed  Google Scholar 

  • Easter, S. S., Jr, Rusoff, A. C. &Kish, P. E. (1981) The growth and organization of the optic nerve and tract in juvenile and adult goldfish.Journal of Neuroscience 1, 793–811.

    PubMed  Google Scholar 

  • Elam, J. S., Goldberg, J. M., Radin, N. S. &Agranoff, B. W. (1970) Rapid axonal transport of sulfated mucopolysaccharide proteins.Science 170, 458–60.

    PubMed  Google Scholar 

  • Ffrench-Constant, C., Miller, R. H., Kruse, J., Schachner, M. &Raff, M. (1986) Molecular specializations of astrocyte processes at nodes of ranvier in rat optic nerve.Journal of Cell Biology 102, 844–52.

    Google Scholar 

  • Gammon, C. M., Goodrum, J. F., Towes, A. D., Okabe, A. &Morell, P. (1985) Axonal transport of glycoconjugates in the rat visual systemJournal of Neurochemistry 44, 376–87.

    PubMed  Google Scholar 

  • Goldberger, M. E. (1991) The use of behavioral methods to predict spinal cord plasticity.Restorative Neurology and Neuroscience 2, 339–50.

    Google Scholar 

  • Goldberger, M. E., Murray, M. &Tessler, A. (1992) Sprouting and regeneration in the spinal cord. InNeuroregeneration (edited byGorio, A.). New York: Raven Press, in press.

    Google Scholar 

  • Hausemann, B., Sievers, J., Hermanns, J. &Berry, M. (1989) Regeneration of axons from the adult rat optic nerve: influence of fetal brain grafts, laminin and artificial basement membrane.Journal of Comparative Neurology 281, 447–66.

    PubMed  Google Scholar 

  • Herndon, M. E. &Lander, A. D. (1990) A diverse set of developmentally regulated proteoglycans is expressed in the rat central nervous system.Neuron 4, 949–61.

    PubMed  Google Scholar 

  • Hoffman, S. &Edelman, G. M. (1987) A proteoglycan with HNK-1 antigenic determinants is a neuron-associated ligand for cytotactin.Proceedings of the National Academy of Sciences (USA) 84, 2523–7.

    Google Scholar 

  • Hopkins, J. M., Ford-Holevinski, T. S., Mccoy, J. P. &Agranoff, B. W. (1985) Laminin and optic nerve regeneration in the goldfish.Journal of Neuroscience 5, 3030–8.

    PubMed  Google Scholar 

  • Jessel, T. M. (1988) Adhesion molecules and the hierarchy of neural development.Neuron 1, 3–13.

    PubMed  Google Scholar 

  • Keller, F., Rimvall, K., Barbe, M. &Levitt, P. (1989) A membrane glycoprotein associated with the limbic system mediates the formation of the septo-hippocampal pathway in vitro.Neuron 3, 551–61.

    PubMed  Google Scholar 

  • Keilhauer, G., Faissner, A. &Schachner, M. (1985) Differential inhibition of neurone-neurone, neuroneastrocyte and astrocyte-astrocyte adhesion of L1, L2 and N-CAM antibodies.Nature 316, 728–30.

    PubMed  Google Scholar 

  • Kiernan, J. A. (1979) Hypotheses concerned with axonal regeneration in the mammalian central nervous system.Biological Reviews 54, 155–97.

    PubMed  Google Scholar 

  • Kiernan, J. A. (1985) A conditioning lesion does not induce axonal regeneration in the optic nerve of the rat.Experimental Neurology 87, 181–4.

    PubMed  Google Scholar 

  • Kleinman, H. K., Cannon, F. B., Laurie, G. W., Kassel, J. R., Aumailley, M., Terranova, V. P., Martin, G. R. &Dubois-Dalcq, M. (1985) Biological activities of laminin.Journal of Cell Biology 27, 317–25.

    Google Scholar 

  • Kromer, L. F., Bjorklund, A. &Stenevi, U. (1981a) Innervation of embryonic hippocampal implants by regenerating axons of cholinergic septal neurons in the adult rat.Brain Research 210, 153–71.

    PubMed  Google Scholar 

  • Kromer, L. F., Bjorklund, A. &Stenevi, U. (1981b) Regeneration of the septohippocampal pathway in adult rat is promoted by utilizing embryonic hippocampal implants as bridges.Brain Research 210, 173–200.

    PubMed  Google Scholar 

  • Kruse, J., Mailhammer, R., Wernecke, H., Faissner, A., Sommer, I., Goridis, C. &Schachner, M. (1984) Neural cell adhesion molecules and myelin associated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1.Nature 311, 153–5.

    PubMed  Google Scholar 

  • Künemund, V., Jungawala, F. B., Fisher, G., Chou, D. K. H., Keilhauer, G. &Schachner, M. (1988) The L2/HNK-1 carbohydrate of neural cell adhesion molecules is involved in cell interactions.Journal of Cell Biology 106, 213–23.

    PubMed  Google Scholar 

  • Laemmli, V. K. (1970) Cleavage of structural proteins during assembly of head bacteriophage T4.Nature 227, 680–5.

    PubMed  Google Scholar 

  • Lander, A. D., Fujii, D. K. &Reichardt, L. F. (1985a) Laminin is associated with the ‘neurite outgrowth promoting factors’ found in conditioned media.Proceedings of the National Academy of Sciences (USA) 82, 2183–7.

    Google Scholar 

  • Lander, A. D., Fujii, D. K. &Reichardt, L. F. (1985b) Purification of a factor that promotes neurite outgrowth: isolation of laminin and associated molecules.Journal of Cell Biology 101, 898–913.

    PubMed  Google Scholar 

  • Landreth, G. E. &Agranoff, B. W. (1976) Explant culture of adult goldfish retina: effect of prior optic nerve crush.Brain Research 118, 299–303.

    PubMed  Google Scholar 

  • Lavie, V., Murray, M., Solomon, A., Ben-Bassat, S., Belkin, M., Rumelt, S. &Schwartz, M. (1990) Growth of injured rabbit optic axons within their degenerating optic nerve.Journal of Comparative Neurology 289, 293–314.

    Google Scholar 

  • Levine, R. L. (1989) Organization of astrocytes in the visual pathway of the goldfish: an immunohistochemical study.Journal of Comparative Neurology 285, 231–45.

    PubMed  Google Scholar 

  • Levitt, D. (1988) Naturally occurring mouse antibodies against T-cell-secreted chondroitin sulphate proteoglycan.Immunology 64, 587–92.

    PubMed  Google Scholar 

  • Liesi, P., Kaakkola, S., Dahl, D. &Vaheri, A. (1984) Laminin is induced in astrocytes of adult brain by injury.EMBO Journal 3, 683–6.

    Google Scholar 

  • Liesi, P. (1985) Laminin-immunoreactive glia distinguish regenerative adult CNS systems from non-regenerative ones.EMBO Journal 4, 2505–11.

    Google Scholar 

  • Liesi, P. &Silver, J. (1988) Is astrocyte laminin involved in axon guidance in the mammalian CNS?Developmental Biology 130, 774–85.

    PubMed  Google Scholar 

  • Linnemann, D. &Bock, E. (1989) Cell adhesion molecules in neural development.Developmental Neuroscience 11, 149–73.

    PubMed  Google Scholar 

  • Lowenger, E. &Levine, R. L. (1988) Studies of the early stages of optic regeneration in the goldfish.Journal of Comparative Neurology 271, 319–30.

    PubMed  Google Scholar 

  • Maggs, A. &Scholes, J. (1990) Reticular astrocytes in the fish optic nerve: macroglia with epithelial characteristics form an axially repeated lacework pattern to which nodes of Ranvier are apposed.Journal of Neuroscience 10, 1600–14.

    PubMed  Google Scholar 

  • Manthorpe, M., Engvall, E., Ruoslahti, E., Longo, F. M., Davis, G. E. &Varon, S. (1983) Laminin promotes neuritic regeneration from cultured peripheral and central neurons.Journal of Cell Biology 97, 1882–90.

    Google Scholar 

  • Manthorpe, M., Hagg, T., Engvall, E. &Varon, S. (1988) Laminin-like immunoreactivity in adult brain neurons.Society for Neuroscience Abstracts 14, 364.

    Google Scholar 

  • Margolis, R. U., Margolis, R. K., Chang, L. B. &Pretli, C. (1975) Glycosaminoglycans of brain during development.Biochemistry 14, 85–8.

    PubMed  Google Scholar 

  • Martini, R. &Schachner, M. (1986) Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM and MAG) and their shared carbohydrate epitope and myelin basic protein in developing sciatic nerve.Journal of Cell Biology 103, 2439–48.

    Google Scholar 

  • McGary, R. C., Helfand, S. L., Quarles, R. H. &Roder, J. C. (1983) Recognition of myelin-associated glycoprotein by the monoclonal antibody HNK-1Nature 306, 376–8.

    PubMed  Google Scholar 

  • McGarry, R., Riopelle, R. J., Frail, D. E., Edwards, M., Braun, P. E. &Roder, J. C. (1985) The characterization and cellular distribution of a family of antigens related to myelin associated glycoprotein in the developing nervous system.Journal of Neuroimmunology 10, 101–14.

    PubMed  Google Scholar 

  • McLoon, L. K. &McLoon, S. C. (1988) Schwann cellconditioned medium promotes neurite outgrowth from explants of fetal rat retina and tectum in vitro.Developmental Biology 39, 61–8.

    Google Scholar 

  • Misantone, L. J., Gershenbaum, M. &Murray, M. (1984) Viability of retinal ganglion cells after optic nerve crush in adult rats.Journal of Neurocytology 13, 449–65.

    PubMed  Google Scholar 

  • Murray, M. (1976) Regeneration of retinal axons into the goldfish optic tectum.Journal of Comparative Neurology 168, 175–96.

    PubMed  Google Scholar 

  • Murray, M. (1982) A quantitative study of regenerative sprouting by optic axons in goldfish.Journal of Comparative Neurology 209, 352–62.

    PubMed  Google Scholar 

  • Murray, M. &Edwards, M. A. (1982) A quantitative study of the reinnervation of the goldfish optic tectum following optic nerve crush.Journal of Comparative Neurology 209, 363–73.

    Google Scholar 

  • Murray, M. &Grafstein, B. (1969) Changes in the morphology of and amino acid incorporation of regenerating goldfish optic neurons.Experimental Neurology 23, 544–60.

    PubMed  Google Scholar 

  • Nieke, J. &Schachner, M. (1985) Expression of the neural cell adhesion molecules L1 and N-CAM and their common carbohydrate epitope L2-HNK-1 during development and after transaction of adult mouse sciatic nerve.Differentiation 30, 141–51.

    PubMed  Google Scholar 

  • Peshava, P., Spiess, E. &Schachner, M. (1989) J1-160 and J1-180 are oligodendrocyte secreted nonpermissive substrates for cell adhesion.Journal of Cell Biology 109, 1765–78.

    Google Scholar 

  • Pixley, S. K., Nieto-Sampedro, M. &Cotman, C. W. (1987) Preferential adhesion of brain astrocytes to laminin and central neurites to astrocytes.Journal of Neuroscience Research 18, 402–6.

    PubMed  Google Scholar 

  • Probstmeier, R., Kühn, K. &Schachner, M. (1989) Binding properties of the neural cell adhesion molecule to different components of the extracellular matrix.Journal of Neurochemistry 53, 1794–801.

    PubMed  Google Scholar 

  • Reichardt, L. F. &Tomaselli, K. J. (1991) Extracellular matrix molecules and their receptors: Functions in neural development.Annual Review of Neuroscience 14, 531–70.

    PubMed  Google Scholar 

  • Richardson, P. M., Issa, V. M. K. &Shemie, S. (1982) Regeneration and retrograde degeneration of axons in the rat optic nerve.Journal of Neurocytology 11, 949–66.

    PubMed  Google Scholar 

  • Riopelle, R. J. &Dow, K. E. (1990) Functional interactions of neuronal heparan sulphate proteoglycans with laminin.Brain Research 525, 92–100.

    PubMed  Google Scholar 

  • Riopellino, J. A. &Elam, J. S. (1988) Axonal transport of proteoglycans to the goldfish optic tectum.Neurochemical Research 13, 479–85.

    PubMed  Google Scholar 

  • Sandrock, A. W., Jr. &Matthew, W. D. (1987) Identification of a peripheral nerve neurite growth-promoting activity by development and use of an in vitro bioassay.Proceedings of the National Academy of Sciences 84, 6934–8.

    Google Scholar 

  • Sanes, J. R., Engvall, E., Butkowski, R. &Hunter, D. D. (1990) Molecular heterogeneity of basal laminae: Isoforms of laminin and collagen IV at the neuromuscular junction and elsewhere.Journal of Cell Biology 111, 1685–99.

    PubMed  Google Scholar 

  • Sarthy, P. V. &Fu, M. (1990) Localization of laminin B1 mRNA in retinal ganglion cells by in situ hybridization.Journal of Cell Biology 110, 2099–108.

    PubMed  Google Scholar 

  • Schwartz, M., Mizrachi, Y. &Esharm, N. (1982) Factors from goldfish brain induce neuritic outgrowth from explanted regenerating retinas.Brain Research 3, 29–35.

    Google Scholar 

  • Schwartz, M., Belkin, M., Harel, A., Solomon, A., Lavie, V., Hadani, M., Rachailovich, I. &Steinizsak, C. (1985) Regenerating fish optic nerves and regeneration-like response in injured nerve of adult rabbits.Science 228, 600–3.

    PubMed  Google Scholar 

  • Shinar, Y., Battisti, W., Schwartz, M., Levitt, P. &Murray, M. (1989) Characterization of the environment of regenerating axons in goldfish optic nerve: differential expression of HNK-1, embryonic N-CAM (EnCAM) and chondroitin sulphate proteoglycan (CSPG).Society for Neuroscience Abstracts 15, 872.

    Google Scholar 

  • Sivron, T., Cohen, A., Duvdevani, R., Jeserich, G. &Schwartz, M. (1990) Glial response to axonal injury: in vitro manifestation and implication for regeneration.Glia 3, 267–76.

    Google Scholar 

  • Skene, P. J. H. &Schooter, E. M. (1983) Denervated sheath cells secrete a new protein after nerve injury.Proceedings of the National Academy of Sciences (USA) 80, 4169–73.

    Google Scholar 

  • Smith, G. M., Miller, R. H. &Silver, J. (1986) Changing role of brain astrocytes during development, regenerative failure and induced regeneration upon transplantation.Journal of Comparative neurology 251, 23–43.

    Google Scholar 

  • Snow, D. M., Lemmon, V., Carrino, D. A., Caplan, A. I. &Silver, J. (1990a) Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro.Experimental Neurology 109, 112–30.

    Google Scholar 

  • Snow, D. M., Steindler, D. A. &Silver, J. (1990b) Molecular and cellular characterization of the glial roof plate of the spinal cord and optic tectum: a possible role for a proteoglycan in the development of an axon barrier.Developmental Biology 138, 359–76.

    PubMed  Google Scholar 

  • So, K.-F. &Aguayo, A. J. (1985) Lengthy regrowth of cut axons from ganglion cells after peripheral nerve transplantation into retina of adult rats.Brain Research 328, 349–54.

    PubMed  Google Scholar 

  • So, K.-F. (1988) Regeneration of retinal ganglion cell axons in adult mammals.Progress in Brain Research 74, 277–83.

    PubMed  Google Scholar 

  • Steindler, D. A., O'brien, T. F., Laywell, E., Harring-Ton, K., Faissner, A. &Schachner, M. (1990) Boundaries during normal and abnormal brain development:in vivo andin vitro studies of glia and glycoconjugates.Experimental Neurology 109, 35–56.

    PubMed  Google Scholar 

  • Timpl, R., Rohde, P., Robey, P., Rennard, S., Foidart, J. M. &Martin, G. (1979) Laminin — a glycoprotein from basement membranes.Journal of Biological Chemistry 254, 9933–7.

    Google Scholar 

  • Timpl, R. &Martin, G. R. (1987) Laminin and other membrane components.Annual Review of Cell Biology 3, 57–85.

    PubMed  Google Scholar 

  • Verna, J.-M., Fichard, A. &Saxod, R. (1989) Influence of glycosaminoglycans on neurite morphology and outgrowth patterns in vitro.International Journal of Developmental Neuroscience 4, 389–99.

    Google Scholar 

  • Vidal-Sanz, M., Bray, G. M., Villegas-Perez, M. P., Thanos, S. &Aguayo, A. J. (1987) Axonal regeneration and synapse formation in the superior colliculus by retinal ganglion cells in the adult rat.Journal of Neuroscience 7, 2894–909.

    Google Scholar 

  • Wang, J., Chacko, J., Battisti, W. P., Eckenrode, T. C. &Murray, M. (1991) The response of non-neuronal cells to optic nerve injury in goldfish.Society for Neuroscience Abstracts 17, 936.

    Google Scholar 

  • Wang, S.-D., Goldberger, M. E. &Murray, M. (1991) Plasticity of spinal system after unilateral lumbosacral dorsal rhizotomy in the adult rat.Journal of Comparative Neurology 304, 555–68.

    Google Scholar 

  • Wewer, U., Albrechtsen, R., Manthorpe, M., Varon, S., Engvall, E. &Ruoslhati, E. (1983) Human laminin isolated in a nearly intact, biologically active form from placenta by limited proteolysis.Journal of Biological Chemistry 258, 12654–60.

    PubMed  Google Scholar 

  • Williams, L. R., Danielsen, N., Müller, H. &Varon, S. (1987) Exogenous matrix precursors promote functional nerve regeneration across a 15 mm gap within a silicone chamber in the rat.Journal of Comparative Neurology 264, 284–90.

    PubMed  Google Scholar 

  • Wolburg, H., (1981) Axonal transport, degeneration, and regeneration in visual system of goldfish.Advances in Anatomy, Embryology and Cell Biology 67, 1–94.

    Google Scholar 

  • Yoshihara, Y., Oka, S., Ikeda, J. &Mori, K. (1991) Immunoglobulin superfamily molecules in the nervous system.Neuroscience Research 10, 83–105.

    PubMed  Google Scholar 

  • Zaremba, S., Naegele, J. R., Barnstable, C. J. &Hockfield, S. (1991) Neuronal subsets express multiple high-molecular weight cell-surface glycoconjugates defined by monoclonal antibodies Cat-310 and VC1.1.Journal of Neuroscience 10, 2985–95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battisti, W.P., Shinar, Y., Schwartz, M. et al. Temporal and spatial patterns of expression of laminin, chondroitin sulphate proteoglycan and HNK-1 immunoreactivity during regeneration in the goldfish optic nerve. J Neurocytol 21, 557–573 (1992). https://doi.org/10.1007/BF01187117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01187117

Keywords

Navigation