Skip to main content
Log in

Global existence for the full von Kármán system

  • Published:
Applied Mathematics and Optimization Submit manuscript

Abstract

We consider here the full system of dynamic von Kármán equations, taking into account the in-plane acceleration terms, which is a model for the vibrations of a nonlinear elastic plate. We prove global existence and uniqueness of strong solutions for this system with various boundary conditions possibly including feedback terms which are useful for stabilization purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bradley, Well-posedness and regularity for a dynamic von Kármán plate, to appear.

  2. M. Bradley and I. Lasiecka, Local exponential stabilization of a nonlinearly perturbed plate, Nonlinear Anal. T.M.A., to appear.

  3. T. Cazenave and A. Haraux, Introduction aux problèmes d'évolution semi-linéaires, Ellipse, Paris, 1991.

    Google Scholar 

  4. I. D. Chueskov, Strong solutions and the attractor of the von Kárman equations, Math. USSR-Sb., 69 (1991), 25–35.

    Google Scholar 

  5. C. Dafermos and W. Hrusa, Energy methods for quasilinear hyperbolic initial-boundary value problems, Arch. Rat. Mech. Anal., 87 (1987), 267–292.

    Google Scholar 

  6. A. Favini and I. Lasiecka, Wellposedness and regularity of second order abstract equations arising in hyperbolic-like problems, Osaka J. Math., to appear.

  7. A. Favini, I. Lasiecka, M. A. Horn, and D. Tataru, Global existence, uniqueness and regularity of solutions to a von Kármán system with nonlinear boundary dissipation, Differential Integral Equations, to appear.

  8. A. Haraux, Semi-linear Problems in Bounded Domains, Harwood, London, 1987.

    Google Scholar 

  9. H. Koch and A. Stahel, Global existence of classical solutions to the dynamical von Kármán equations, Math. Methods Appl. Sci., 16 (1993), 581–586.

    Google Scholar 

  10. J. E. Lagnese, Boundary Stabilization of Thin Plates, SIAM, Philadelphia, PA, 1989.

    Google Scholar 

  11. J. E. Lagnese, Uniform asymptotic energy estimates for solutions of the equations of dynamic plane elasticity with nonlinear dissipation at the boundary, Nonlinear Anal. T.M.A., 16 (1991), 35–54.

    Google Scholar 

  12. J. E. Lagnese and G. Leugering, Uniform stabilization of a nonlinear beam by nonlinear boundary feedback, J. Differential Equations, 91 (1991), 355–388.

    Google Scholar 

  13. J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969.

    Google Scholar 

  14. J. L. Lions, Hidden regularity in some nonlinear hyperbolic equations, Mat. Apl. Comput., 6 (1987), 7–17.

    Google Scholar 

  15. J. L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Masson, Paris, 1968.

    Google Scholar 

  16. J. P. Puel and M. Tucsnak, Stabilisation frontière pour les équations de von Kármán, C. R. Acad. Sci. Paris Sér. I, 314 (1992), 609–612.

    Google Scholar 

  17. J. P. Puel and M. Tucsnak, Boundary stabilization for the von Kárm↭ equations, SIAM J. Control, 33 (1995), 255–273.

    Google Scholar 

  18. J. Simon, Compact sets in the space Lp(0,T; S), Ann. Mat. Pura Appl. (IV), CXLVI (1987), 65–96.

    Google Scholar 

  19. A. Stahel, A remark on the equation of a vibrating plate, Proc. Roy. Soc. Edinburgh Sect. A, 106 (1987), 307–314.

    Google Scholar 

  20. W. von Wahl, On nonlinear evolution equations in a Banach space and on nonlinear vibrations of the clamped plate, Bayreuth. Math. Schr., 7 (1981), 1–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by I. Lasiecka

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puel, J.P., Tucsnak, M. Global existence for the full von Kármán system. Appl Math Optim 34, 139–160 (1996). https://doi.org/10.1007/BF01182621

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01182621

Key words

AMS classification

Navigation