Skip to main content
Log in

Dynamic propagation of a finite crack in a micropolar elastic solid

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The dynamic propagation of a finite crack under mode-I loading in a micropolar elastic solid is investigated. By using an integral transform method, a pair of two-dimensional singular integral equations governing stress and couple stress is formulated in terms of displacement transverse to the crack, macro and micro rotations, and microinertia. These equations are solved numerically, and solutions for dynamic stress intensity and couple stress intensity factors are obtained by utilizing the values of the strengths of the square root singularities in macrorotation and the gradient of microrotation at the crack tips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yoffe, E. H.: The moving Griffith crack. Phil. Mag.42, 739–750 (1951).

    Google Scholar 

  2. Craggs, J. W.: On the propagation of a crack in an elastic brittle materials. J. Mech. Phys. Solids8, 66–75 (1960).

    Google Scholar 

  3. Sih, G. C., Loeber, J. F.: Wave propagation in an elastic solid with a line of discontinuity or finite crack. Quart. Appl. Math.27, 193–213 (1969).

    Google Scholar 

  4. Broberg, K. B.: The propagation of a brittle crack. Arkiv. Fysik18, 159–172 (1960).

    Google Scholar 

  5. Baker, B. R.: Dynamic stresses created by a moving crack. J. Appl. Mech.29, 449–458 (1962).

    Google Scholar 

  6. Freund, L. B.: Crack propagation in an elastic solid subjected to general loading — I. Nonuniform rate of extension. J. Mech. Phys. Solid20, 129–140 (1972).

    Google Scholar 

  7. Thau, S. A., Lu, T. H.: Transient stress intensity factors for a finite crack in an elastic solid caused by a dilatational wave. Int. J. Solids Struct.7, 731–750 (1971).

    Google Scholar 

  8. Eringen, A. C., Suhubi, E. S.: Elastodynamics, vol. 2. New York: Academic Press 1974.

    Google Scholar 

  9. Kim, K. S.: Elastodynamic analysis of a propagating finite crack. Unpublised Ph. D. dissertation, University of Illinois at Urbana-Champaign, Urbana, IL (1977).

    Google Scholar 

  10. Eringen, A. C., Suhubi, E. S.: Non-linear theory of microelastic solids. Int. J. Engr. Sci.2, 389–404 (1964).

    Google Scholar 

  11. Eringen, A. C.: Linear theory of micropolar elasticity. J. Math. Mech.15 (6), 909–924 (1966).

    Google Scholar 

  12. Achenbach, J. D., Bazant, Z. P.: Elastodynamic near-tip stress and displacement fields for rapidly propagating cracks in orthotropic materials. J. Appl. Mech.42, 183–189 (1975).

    Google Scholar 

  13. Freund, L. B., Clifton, R. J.: On the uniqueness of plane elastodynamic solutions for running cracks. J. Elasticity4, 293–299 (1974).

    Google Scholar 

  14. Muskhelishvili, N. I.: Singular integral equations. Noordhoff. 1953.

  15. Han, S. Y.: Elastodynamic analysis of a propagating fracture crack in a micropolar elastic solid. Unpublished Ph. D. dissertation, Oregon State University, Corvallis, OR (1989).

    Google Scholar 

  16. Gauthier, R. D., Jahsman, W. E.: A quest for micropolar elastic constant-II, Second Polish-Swedish symposium in microelastic solids, Stockholm (1979).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, S.Y., Narasimhan, M.N.L. & Kennedy, T.C. Dynamic propagation of a finite crack in a micropolar elastic solid. Acta Mechanica 85, 179–191 (1990). https://doi.org/10.1007/BF01181516

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01181516

Keywords

Navigation