Skip to main content
Log in

Non-unique solutions of the boundary layer equations for the flow near the equator of a rotating sphere in a rotating fluid

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

In this paper it is shown, using a numerical technique, that axially-symmetric solutions of the boundary layer equations which describe the rotating flow near the equator of a rotating sphere are not unique. In certain regimes it is found that at least three possible solutions are possible. When the sphere and fluid rotate with almost the same angular velocity it is shown that the approach to solid body rotation is a non linear process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kobashi, Y.: Measurements of boundary layers on a rotating sphere. J. Sci. Hiroshima Univ. (Japan)A 20 (1957).

  2. Bowden, F. P., Lord, R. G.: The aerodynamic resistance to a sphere rotating at high speed. Proc. Roy. Soc.A 271, 143–153 (1963).

    Google Scholar 

  3. Kreith, R., Roberts, L. G., Sullivan, J. A., Sinha, S. N.: Convective heat transfer and flow phenomena of rotating spheres. Int. Heat Mass Transf.6, 881–895 (1963).

    Google Scholar 

  4. Sawatzki, O.: Das Strömungsfeld um eine rotierende Kugel. Acta Mechanica9, 159–214 (1970).

    Google Scholar 

  5. Collins, W. D.: On the steady rotation of a sphere in a viscous fluid. Mathematika2, 42–47 (1955).

    Google Scholar 

  6. Thomas, R. H., Walters, K.: The motion of an elastico-viscous due to a sphere rotating about its diameter. Quart. J. Mech. Appl. Math.17, 39–53 (1964).

    Google Scholar 

  7. Takagi, H.: Viscous flow induced by slow rotation of a sphere. J. Phys. Soc. Japan42, 319–325 (1977).

    Google Scholar 

  8. Howarth, L.: Note on the boundary layer on a rotating sphere. Phil. Mag.42, 1308–1315 (1951).

    Google Scholar 

  9. Nigam, S. D.: Note on the boundary layer on a rotating sphere. Z. Angew. Math. Phys.5, 151–155 (1954).

    Google Scholar 

  10. Stewartson, K.: On rotating laminar boundary layers. Boundary Layer Research, pp. 59–71. Berlin-Göttingen-Heidelberg: Springer 1957.

    Google Scholar 

  11. Fox, J.: Boundary layers on rotating spheres and other axisymmetric shapes. NASA TND-2491 (1964).

  12. Banks, W. H. H.: The boundary layer on a rotating sphere. Quart. J. Mech. Appl. Math.18, 443–454 (1965).

    Google Scholar 

  13. Banks, W. H. H.: The laminar boundary layer on a rotating sphere. Acta Mechanica24, 273–287 (1976).

    Google Scholar 

  14. Manohar, R.: The boundary layer on a rotating sphere. Z. Angew. Math. Phys.18, 320–330 (1967).

    Google Scholar 

  15. Singh, S. N.: Laminar boundary layer on a rotating sphere. Physics of Fluids13, 2452–2454 (1970).

    Google Scholar 

  16. Dennis, S. C. R., Singh, S. N., Ingham, D. B.: The steady flow due to a rotating sphere at low and moderate Reynolds numbers. J. Fluid Mech.101, 257–279 (1980).

    Google Scholar 

  17. Dennis, S. C. R., Ingham, D. B., Singh, S. N.: The steady flow in a viscous fluid due to a rotating sphere. Quart. J. Mech. Appl. Math. (to be published).

  18. Banks, W. H. H.: A fixed sphere on the axis of an unbounded rotating fluid (R≫1). Acta Mechanica11, 27–44 (1971).

    Google Scholar 

  19. Singh, S. N.: Flow about a stationary sphere in a slowly rotating viscous fluid. J. Appl. Mech.41, 564–570 (1974).

    Google Scholar 

  20. Rogers, M. H., Lance, G. N.: The rotationally symmetric flow of a viscous fluid in the presence of an inifinte rotating disc. J. Fluid Mech.7, 617–631 (1960).

    Google Scholar 

  21. Evans, D. J.: The rotationally symmetric flow of a viscous fluid in the presence of an infinite rotating disc. Quart. J. Mech. Appl. Math.22, 467–485 (1969).

    Google Scholar 

  22. Ockendon, H.: An asymptotic solution for steady flow above an infinite rotating disc with suction. Q. J. Mech. Appl. Math.25, 291–301 (1972).

    Google Scholar 

  23. Bodonyi, R. J.: On rotationally symmetric flow above an infinite disk. J. Fluid Mech.67, 657–666 (1975).

    Google Scholar 

  24. Dijkstra, D., Zandbergen, P. J.: Non-unique solutions of the Navier-Stokes equations for the Karman swirling flow. J. Engng. Math.11, 167–188 (1977).

    Google Scholar 

  25. Dijkstra, D., Zandbergen, P. J.: Some further investigations of non-unique solutions of the Navier-Stokes equations for the Karman swirling flow. Archives of Mechanics30, 411–419 (1979).

    Google Scholar 

  26. Hastings, S. P.: The existence theorem for some problems from boundary layer theory. Archive Rat., Mech. Anal.38, 308–316 (1970).

    Google Scholar 

  27. McLeod, J. B.: The asymptotic form of solutions of von Karman's swirling flow problem. Quart. J. Math.20, 483–496 (1969).

    Google Scholar 

  28. McLeod, J. B.: A note on rotationally symmetric flow above an infinite rotating disk. Mathematica17, 243–249 (1970).

    Google Scholar 

  29. McLeod, J. B.: The existence of axially symmetric flow above a rotating disk. Proc. Roy. Soc.A 324, 391–414 (1971).

    Google Scholar 

  30. Bushell, P. J.: On Von Karman's equations of swirling flow. J. London Math. Soc.4, 701–710 (1972).

    Google Scholar 

  31. Hartman, P.: On the swirling flow problem. Indian Univ. Math. J.21, 849–855 (1972).

    Google Scholar 

  32. Lan, C. C.: On functional differential equations and some laminar boundary layer problems. Archive Rat. Mech. Anal.42, 24–39 (1971).

    Google Scholar 

  33. Smith, F. T., Duck, P. W.: Separtation of jets on thermal boundary layers from a wall. Quart. J. Mech. Appl. Math.30, 143–156 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 5 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingham, D.B. Non-unique solutions of the boundary layer equations for the flow near the equator of a rotating sphere in a rotating fluid. Acta Mechanica 42, 111–122 (1982). https://doi.org/10.1007/BF01176517

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01176517

Keywords

Navigation