Skip to main content
Log in

Calorimetric techniques for the evaluation of thermal efficiencies of shape memory alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The latent heat and entropy changes of NiTi shape memory effect (SME) alloys have been evaluated by three different calorimetric techniques; adiabatic calorimetry, differential scanning calorimetry and a Clapeyron analysis of isothermal stress-strain data. It is found that these techniques provide consistent estimates for the enthalpy and entropy to within 20% for NiTi and noble metal SME alloys. From published thermodynamic data for SME alloys, thermal efficiencies were calculated based on an ideal SME heat engine cycle. It was found that NiTi provides the maximum thermal efficiency with the highest temperature transformation range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. nP. Wollants, M. De Bonte andJ. Roos,Z. Metallkde 70 (1979).

  2. Idem, ibid. 70 (1979) 113.

    Google Scholar 

  3. A. P. Jardine,J. Mater. Sci. (1987).

  4. M. Ahlers,Scripta Metall. 9 (1975) 7174.

    Google Scholar 

  5. H. C. Tong andC. M. Wayman,Acta. Metall. 22 (1974) 987.

    Google Scholar 

  6. K. Mukherjee,Scripta Metall. 14 (1980) 405.

    Google Scholar 

  7. R. J. Salzbrenner andM. Cohen,Acta Metall. 24 (1980) 739.

    Google Scholar 

  8. G. Kaufman andM. Cohen,Progr. Metal Phys. 7 (1958) 197.

    Google Scholar 

  9. A. P. Jardine, K. H. G. Ashbee andM. Bassett,J. Mater. Sci. (1987).

  10. M. Melton andO. Mercier,J. Appl. Phys. 50 (1979) 5747.

    Google Scholar 

  11. F. E. Wang, W. J. Buehler andS. J. Pickart,ibid. 36 (1965) 3232.

    Google Scholar 

  12. R. J. Wasilewski, S. R. Butler, J. E. Manlon andD. Warden,Met. Trans. 2 (1971) 229.

    Google Scholar 

  13. H. A. Berman, E. D. West andA. G. Rozner,J. Appl. Phys. 38 (1967) 4473.

    Google Scholar 

  14. E. Goo andR. Sinclair,Acta Metall. 33 (1985) 1717.

    Google Scholar 

  15. S. Miyazaki, S. Kimura, K. Otsuka andY. Suzuki,Scripta Metall. 18 (1984) 883.

    Google Scholar 

  16. S. Miyazaki, K. Otsuka andY. Suzuki,ibid. 15 (1981) 287.

    Google Scholar 

  17. G. M. Michal andR. Sinclair,Acta Crystallogr. B 37 (1981) 1803.

    Google Scholar 

  18. S. Miyazaki, Y. Ohmi, K. Otsuka andY. Suzuki, Proceedings ICOMAT (Leuven),J. de Phys. 43 (1982) C4–255.

    Google Scholar 

  19. T. Suburi, T. Tatsumi andS. Nenno,ibid. 43 (1982) C4–261.

    Google Scholar 

  20. N. Nakanishi, T. Mori, S. Miura et al., Phil. Mag. 28 (1973) 277.

    Google Scholar 

  21. N. Nakanishi andC. M. Wayman,Trans. AIME. 227 (1963) 500.

    Google Scholar 

  22. J. Intrater, L. C. Chang andT. A. Reed,Phys. Rev. 86 (1952) 598.

    Google Scholar 

  23. B. Predel,Z. Metallkde 55 (1964) 117.

    Google Scholar 

  24. S. Miura, S. Maeda andN. Nakanishi,Phil. Mag. 30 (1974) 565.

    Google Scholar 

  25. S. Miura, F. Hori andN. Nakanishi,ibid. A40 (1979) 661.

    Google Scholar 

  26. J. Patel andS. Ahmed,Met. Sci. 12 (1978) 147.

    Google Scholar 

  27. S. Miura, T. Ito andN. Nakanishi,Scripta Metall. 10 (1974) 87.

    Google Scholar 

  28. M. W. Burkhart andT. A. Read,Trans. AIME 197 (1953) 1516.

    Google Scholar 

  29. S. Miura, M. Ito, K. Endo andN. Nakanishi,Mem. Fac. Eng. Kyoto Uni. 43 (1983) 287.

    Google Scholar 

  30. S. Miura, T. Mori andN. Nakanishi,Scripta Metall. 7 (1973) 697.

    Google Scholar 

  31. R. V. Krishnan andL. C. Brown,Metall. Trans. 4 (1973) 423.

    Google Scholar 

  32. W. Arneodo andM. Ahlers,Acta Metall. 22 (1974) 1475.

    Google Scholar 

  33. J. D. Eisenwasser andL. C. Brown,Metall. Trans. (1972) 1359.

  34. T. A. Schroeder andC. M. Wayman,Acta Metall. 27 (1979) 405.

    Google Scholar 

  35. K. Otsuka, H. Sakamoto andK. Shimuzu,ibid. 27 (1979) 585.

    Google Scholar 

  36. T. Saburi, Y. Inada, S. Nenno andN. Hori, Proceedings ICOMAT (Leuven),J. de Phys. 43 (1982) C4–633.

    Google Scholar 

  37. P. Wollants, M. De Bonte andJ. Roos,Z. Metallkde 70 (1979a).

  38. H. Pops andN. Ridley,Met. Trans. 1 (1970) 2653.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jardine, A.P. Calorimetric techniques for the evaluation of thermal efficiencies of shape memory alloys. J Mater Sci 24, 2587–2593 (1989). https://doi.org/10.1007/BF01174530

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01174530

Keywords

Navigation