Skip to main content
Log in

Indentation fracture in the In1−x Ga x As y P1−y /InP system and its effect on microhardness anisotropy characteristics

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Knoop microhardness anisotropy measurements on the {100}-orientated In1−x Ga x As y P1−y /InP system have disclosed an appreciable variation in hardness behaviour across the composition range of the alloy. This paper relates these variations to changes in the directional fracture characteristics of the system. The qualitative investigation of both Vickers and Knoop indentation fracture has established the emergence of a secondary 〈100〉 cleavage direction at high values of the composition parameter, abovey ≅ 0.6. Furthermore, the number and extent of cracks emanating from indentations were seen to increase appreciably asy increases from 0 to 1. A quantitative analysis of Vickers indentation fracture in the quaternary system has indicated a marked dependence of fracture-related parameters on both the indentor orientation and composition. Fracture toughness values from ∼ 3.105 to ∼ 1.106 N m/12 have been derived using expressions from the literature. The marked change in Knoop microhardness anisotropy characteristics with increasingy in the In1−x Ga x As y P1−y /InP system has been partially correlated to the emergence of 〈100〉 cleavage and the general increase in indentation fracture, highlighted by the quantitative fracture measurements. Thus, it is concluded that even at very low indentation loads, the effect of fracture on the measured hardness of crystalline materials cannot be ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Y. Watts andA. F. W. Willoughby,J. Appl. Phys. 56 (1984) 1869.

    Google Scholar 

  2. Idem, Mater. Lett. 2 (1984) 355.

    Google Scholar 

  3. Idem, Proceedings 13th International Conference on Defects in Semiconductors, Coronado, California, edited by L. C. Kimmerling and J. M. Parsey, The Metallurgical Society of AIME, 12–17 August, 1984, pp. 1187–94.

  4. D. Brasen,J. Mater. Sci. 11 (1976) 791.

    Google Scholar 

  5. Idem, ibid. 13 (1978) 1776.

    Google Scholar 

  6. D. Y. Watts, PhD thesis (1986).

  7. F. W. Daniels andC. G. Dunn,Trans. Amer. Soc. Met. 41 (1949) 419.

    Google Scholar 

  8. C. Feng andC. Elbaum,Trans. Met. Soc. AIME 212 (1958) 47.

    Google Scholar 

  9. C. A. Brookes, J. B. O'Neill andB. A. W. Redfern,Proc. Roy. Soc. A 322 (1971) 73.

    Google Scholar 

  10. M. Garfinkle andR. G. Garlick,Trans. Met. Soc. AIME 242 (1968) 809.

    Google Scholar 

  11. G. Y. Chin andW. A. Hargreaves, in “The Science of Hardness testing and its research applications”, edited by J. H. Westbrook and H. Conrad, Symposium Proceedings (American Society of Metals, Detroit, 1971) ch. 12.

    Google Scholar 

  12. S. Komiya andK. Nakajima,J. Crystal Growth 48 (1980) 403.

    Google Scholar 

  13. O. Ueda, S. Komiya, S. Yamazaki, Y. Kishi, I. Umebo andT. Kotani,Jpn J. Appl. Phys. 23 (1984) 836.

    Google Scholar 

  14. J. A. Lourenco,J. Electrochem. Soc. 131 (1984) 1914.

    Google Scholar 

  15. D. Tabor,Rev. Phys. Technol. 1 (1970) 145.

    Google Scholar 

  16. B. R. Lawn andT. R. Wilshaw,J. Mater. Sci. 10 (1975) 1049.

    Google Scholar 

  17. C. A. Brookes,Nature London 228 (1970) 660.

    Google Scholar 

  18. H. Hertz,J. Reine Angew Matt. 92 (1881) 156.

    Google Scholar 

  19. 9J. Boussinesq, “Application des Potentials a l'Etude d'equilibre et du mouvement des solides elastiques” (Gauthier-Villars, Paris, 1885).

    Google Scholar 

  20. S. Palmqvist,Arch. Eisenhuttenw. 33 (1962) 629.

    Google Scholar 

  21. M. T. Huber,Ann. Physik 14 (1904) 153.

    Google Scholar 

  22. H. E.Exner,Trans. Met. Soc. AIME 245 (1969) 677.

    Google Scholar 

  23. B. R. Lawn andM. V. Swain,J. Mater. Sci. 10 (1975) 113.

    Google Scholar 

  24. B. R. Lawn andE. R. Fuller,ibid. 10 (1975) 2016.

    Google Scholar 

  25. B. J. Hockey andB. R. Lawn,ibid. 10 (1975) 1275.

    Google Scholar 

  26. D. B. Marshall andB. R. Lawn,ibid. 14 (1979) 2001.

    Google Scholar 

  27. B. R. Lawn andD. B. Marshall,J. Amer. Ceram. Soc. 62 (1978) 347.

    Google Scholar 

  28. S. G. Roberts, P. Pirouz andP. B. Hirsch,J. Mater. Sci. 20 (1985) 1739.

    Google Scholar 

  29. B. R. Lawn andA. G. Evans,ibid. 12 (1977) 2195.

    Google Scholar 

  30. A. G. Evans andE. A. Charles,J. Amer. Ceram. Soc. 59 (1976) 371.

    Google Scholar 

  31. I. H. Wawra,Blech Rohre 8 (1975) 333.

    Google Scholar 

  32. M. Beuberger, (ed.) “Handbook of Electronic Materials”, Vol. 2 (IFI/Plenum, New York, 1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watts, D.Y., Willoughby, A.F.W. Indentation fracture in the In1−x Ga x As y P1−y /InP system and its effect on microhardness anisotropy characteristics. J Mater Sci 23, 272–280 (1988). https://doi.org/10.1007/BF01174065

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01174065

Keywords

Navigation