Skip to main content
Log in

Modal analysis of elastic-viscoplastic Timoshenko beam vibrations

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A semi-analytic inelastic Timoshenko beam theory based on a modal solution is developed. Inelastic strains are equivalent to eigenstrains in an identical but entirely elastic background structure. Proper resultants of these eigenstrains, i.e. inelastic curvatures and averaged inelastic shear angels, are defined. Deformations and cross sectional resultants due to these eigenstrain resultants are obtained by means of proper dynamic Green's functions. Since the deformation of the background structure is elastic, linear dynamic solution methods become applicable in a time incremental procedure. In order to enhance the efficiency of this time domain algorithm, an analytic quasistatic protion is separated from the solution. Rate dependence of plastic deformation is considered, and ductile damage in a model of void growth is taken into account. The intensity and distribution of the a priori unknown eigenstrains and imposed shear angles are determined by the constitutive law and calculated in an iterative procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eyre, D. G.: Inelastic shear deflection of steel beams. J. Struct. Division, Proc. ASCE99, 1985–1997 (1973).

    Google Scholar 

  2. Bleich, H. H., Shaw, R.: Dominance of shear stresses in early stages of impulsive motions of beams. J. Appl. Mech.27, 132–138 (1960).

    Google Scholar 

  3. Jones, N., Guedes Soares, C.: Higher modal dynamic plastic behavior of beams loaded impulsively. Int. J. Mech. Sci.20, 135–147 (1978).

    Google Scholar 

  4. Karunes, B., Onat, E. T.: On the effect of shear on plastic deformation of beams under transverse impact loading. J. Appl. Mech.27, 107–110 (1960).

    Google Scholar 

  5. Nonaka, T.: Some interaction effects in a problem of plastic beam dynamics. Part 1: Interaction analysis of a rigid, perfectly plastic beam. J. Appl. Mech.34, 623–630 (1967).

    Google Scholar 

  6. Symonds, P. S.: Plastic shear deformation in dynamic load problems. In: Engineering plasticity (Heyman, J., Leckie, F. A., eds.) pp. 647–664. Cambridge: University Press 1968.

    Google Scholar 

  7. Nonaka, T.: Shear and bending response of a rigid-plastic beam to blast-type loading. Ing. Arch.46, 35–52 (1977).

    Google Scholar 

  8. Gomes de Oliveira, J., Jones, N.: Some remarks on the influence of transverse shear on the plastic yielding of structures. Int. J. Mech. Sci.20, 759–765 (1978).

    Google Scholar 

  9. Jones, N., Gomes de Oliveira, J.: A numerical procedure for the dynamic plastic response of beams with rotatory inertia and transverse shear effect. J. Struct. Mech.7, 193–230 (1979).

    Google Scholar 

  10. Jones, N., Gomes de Oliveira, J.: The influence of rotatory inertia and transverse shear on the dynamic plastic behavior of beams. J. Appl. Mech.46, 303–310 (1979).

    Google Scholar 

  11. Li, Q. M., Jones, N.: Blast loading of fully clamped beams with transverse shear effects. Mech. Struct. Mach.23, 59–86 (1995).

    Google Scholar 

  12. Müller, M.: Zur Beschreibung der Längs- und Querschwingungen von elastisch-plastischen Balken bei isotropem Verfestigungsverhalten. ZAMM71, T259-T261 (1991).

    Google Scholar 

  13. Müller, M., Hauger, W.: Elastic-plastic wave propagation of combined generalized forces in a Timoshenko beam. In: Advances in continuum mechanics (Brüller, O., Mannl, V., Najar, J., eds.), pp. 361–370. Berlin Heidelberg New York Tokyo: Springer 1991.

    Google Scholar 

  14. Müller, M., Pao, Y.-H., Hauger, W.: A dynamic model for a Timoshenko beam in an elastic-plastic state. Arch. Appl. Mech.63, 301–312 (1993).

    Google Scholar 

  15. Dafalias, Y. F.: Elastic-plastic strain coupling within a thermodynamic strain space formulation in plasticity. J. Non-Linear Mech.12, 327–337 (1977).

    Google Scholar 

  16. Liu, S. C., Lin, T. H.: Elastic-plastic dynamic analysis of structures using known elastic solution. Earthquake Eng. Struct. Dyn.7, 147–159 (1979).

    Google Scholar 

  17. Manoach, E., Karagiozova, D.: Dynamic response of elastic-plastic beams. Int. J. Mech. Sci.35, 909–919 (1993).

    Google Scholar 

  18. Irschik, H.: Biaxial dynamic bending of elastoplastic beams. Acta Mech.62, 155–167 (1986).

    Google Scholar 

  19. Fotiu, P., Irschik, H., Ziegler, F.: Dynamic plasticity: structural drift and modal projections. In: Nonlinear dynamics in engineering systems (Schiehlen, W., ed.), pp. 75–82. Berlin Heidelberg New York Tokyo: Springer 1990.

    Google Scholar 

  20. Brunner, W., Irschik, H.: An efficient algorithm for elasto-viscoplastic vibrations of multi-layered composite beams using second-order theory. Nonlinear Dyn.6, 37–48 (1994).

    Google Scholar 

  21. Adam, C.: Verfeinerte Theorien zur effizienten dynamischen Berechnung plastizierender Träger. Doctoral thesis, Technical University Vienna 1994.

  22. Adam, C., Ziegler, F.: Oblique flexural vibrations of viscoplastic damaging beams — Monte Carlo simulation. In: Computational stochastic mechanics (Spanos, P. D., ed.), pp. 277–286. Rotterdam: Balkema 1995.

    Google Scholar 

  23. Fotiu, P. A.: Die dynamische Wirkung dissipativer Prozesse in Materialien mit Mikrodefekten mit Anwendungen auf Schwingungsprobleme inelastischer Plattentragwerke. Doctoral thesis, Technical University Vienna 1990.

  24. Fotiu, P. A.: Elastodynamics of thin plates with internal dissipative processes, Part I. Theoretical foundations. Acta Mech.95, 29–50 (1992).

    Google Scholar 

  25. Fotiu, P. A.: Elastodynamics of thin plates with internal dissipative processes, Part II. Computational aspects. Acta Mech.98, 187–212 (1993).

    Google Scholar 

  26. Fotiu, P. A., Irschik, H., Ziegler, F.: Modal analysis of elastic-plastic plate vibrations by integral equations. Eng. Anal. Boundary Elaments14, 81–97 (1994).

    Google Scholar 

  27. Irschik, H., Ziegler, F.: Dynamics of linear elastic structures with selfstress: a unified treatment for linear and nonlinear problems. ZAMM68, 53–69 (1988).

    Google Scholar 

  28. Fotiu, P. A., Irschik, H., Ziegler, F.: Large dynamic deflections of elastic-plastic structures including material damage due to void growth. In: Finite inelastic deformations. Theory and applications (Besdo, D., Stein, E., eds.), pp. 67–80. Berlin Heidelberg New York Tokyo: Springer 1992.

    Google Scholar 

  29. Broek, D.: Elementary engineering fracture mechanics. The Hague: Martinus Nijhoff 1984.

    Google Scholar 

  30. Kachanov, L. M.: Introduction to continuum damage mechanics. Dordrecht: Martinus Nijhoff 1986.

    Google Scholar 

  31. Timoshenko, S. P.: On the correction of shear of the differential equation for transverse vibrations of prismatic bars. Phil. Mag. Ser.6, 41, 744–746 (1921).

    Google Scholar 

  32. Adam, C.: Dynamics of linear elastic Timoshenko beams with eigenstrains Asian J. Struct. Eng. (to appear).

  33. Magrab, E. B.: Vibrations of elastic structural members. Germantown, Maryland: Sijthoff & Noordhoff 1979.

    Google Scholar 

  34. Boley, B. A., Barber, A. D.: Dynamic response of beams and plates to rapid heating. J. Appl. Mech.24, 413–420 (1957).

    Google Scholar 

  35. Rubin, H., Vogel, U.: Baustatik ebener Stabwerke. In: Stahlbauhandbuch, Band 1. Köln: Stahlbau-Verlags-GmbH 1982.

    Google Scholar 

  36. Gurson, A. L.: Continuum theory of ductile rupture by void nucleation and growth. Part I: Yield criteria and flow rules for porous ductile media. J. Eng. Mat. Techn.9, 2–15 (1977).

    Google Scholar 

  37. Perzyna, P.: The constitutive equations for rate sensitive plastic materials. Q. Appl. Math.20, 321–332 (1963).

    Google Scholar 

  38. Lemaitre, J.: A continuous damage mechanics model for ductile fracture. J. Eng. Mat. Techn.107, 83–89 (1985).

    Google Scholar 

  39. Spitzig, W. A., Smelser, R. E., Richmond, O.: The evolution of damage and fracture in iron compacts with various initial porosities. Acta Metall.36, 1201–1211 (1988).

    Google Scholar 

  40. Fotiu, P. A., Irschik, H., Ziegler, F.: Micromechanical foundations of dynamic plasticity with applications to damaging structures. In: Advances in continuum mechanics (Brüller, O., Mannl, V., Najar, J., eds.), pp. 338–349. Berlin Heidelberg New York Tokyo: Springer 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adam, C. Modal analysis of elastic-viscoplastic Timoshenko beam vibrations. Acta Mechanica 126, 213–229 (1998). https://doi.org/10.1007/BF01172809

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01172809

Keywords

Navigation