Skip to main content
Log in

A non-local rate-type viscoplastic approach to patterning of deformation

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

We propose here a new model to the problem of phase transformations which account for micro-structural effects and non-equilibrium phenomena. The model is obtained by incorporating higher-order strain gradients in the relaxation function of a Maxwell's rate-type constitutive equation. This approach can be included in Šilhavý's thermodynamical theory of non-simple bodies with internal variables. Explicit necessary and sufficient conditions are given such that the model be fully compatible with the unmodified Clausius-Duhem inequality and balance equations. We show that its elastic set has to be the closure of an open set in the strain-stress-higher strain gradients space, i.e., the model is a viscoplastic one in the sense of Sokolovskii-Malvern. Energy estimates for smooth solutions of strain controlled problems are given. The influence of the “viscous mechanism”, “softening mechanism” and of the “strain gradients effects” on the local behaviour of solutions is investigated. Critical wave lengths for the onset of instability and pattern formation are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suliciu, I.: On the description of the dynamics of phase transitions by means of rate-type constitutive equations. A model problem. In: Proceedings of Plasticity '89 (Khan, A. S., Tokuda, M., eds.), pp. 417–420. New York: Pergamon Press 1989.

    Google Scholar 

  2. Fâciu, C.: Numerical aspects in modelling phase transitions by rate-type constitutive equations. Int. J. Eng. Sci.29, 1103–1119 (1991).

    Google Scholar 

  3. Fâciu, C.: Stress-induced phase transformations in rate-type viscoelasticity. J. Phys. IV1, C101-C106 (1991).

    Google Scholar 

  4. Suliciu, I.: Some stability-instability problems in phase transitions modelled by piecewise linear elastic or viscoelastic constitutive equations. Int. J. Eng. Sci.30, 483–494 (1992).

    Google Scholar 

  5. Mihâilescu-Suliciu, M., Suliciu, I.: Stable numerical solutions to a dynamic problem for a softening material. Mech. Res. Comm.20, 475–480 (1993).

    Google Scholar 

  6. Fâciu, C., Suliciu, I.: A Maxwellian model for pseudoelastic materials. Scripta Metall.31, 1399–1404 (1994).

    Google Scholar 

  7. Suliciu, I.: Some numerical results for viscoplastic softening problem. Arch. Mech.47, 391–403 (1995).

    Google Scholar 

  8. Fâciu, C.: Initiation and growth of strain bands in rate-type viscoelastic materials. Part I: Discontinuous strain solutions, Eur. J. Mech. A/Solids15, 969–988 (1996).

    Google Scholar 

  9. Fâciu, C.: Initiation and growth of strain bands in rate-type viscoelastic materials. Part II: The energetics of the banding mechanism. Eur. J. Mech. A/Solids15, 989–1011 (1996).

    Google Scholar 

  10. Aifantis, E. C., Serrin, J. B.: The mechanical theory of fluid interfaces and Maxwell's rule. J. Colloid. Interface Sci.96, 517–529 (1983).

    Google Scholar 

  11. Aifantis, E. C., Serrin, J. B.: Equilibrium solutions in the mechanical theory of fluid microstructures. J. Colloid. Interface Sci.96, 530–547 (1983).

    Google Scholar 

  12. Falk, F.: Ginzburg-Landau theory of static domain walls in shape memory-alloys. Z. Phys. B — Condensed Matter51, 177–185 (1983).

    Google Scholar 

  13. Triantafyllidis, N., Aifantis, E. C.: A gradient approach to localization of deformation. I. Hyperelastic materials. J. Elasticity16, 225–237 (1986).

    Google Scholar 

  14. Leroy, Y. M., Molinari, A.: Spatial patterns and size effects in shear zones: a hyperelastic model with higher-order gradients. J. Mech. Phys. Solids41, 631–663 (1993).

    Google Scholar 

  15. Zbib, H. M., Aifantis, E. C.: On the gradient-dependent theory of plasticity and shear banding. Acta Mech.92, 209–225 (1992).

    Google Scholar 

  16. Coleman, B. D., Newman, D. C.: On adiabatic shear bands in rigid-plastic materials. Acta Mech.78, 263–279 (1989).

    Google Scholar 

  17. Aifantis, E. C.: Spatio-temporal instabilities in deformation and fracture. In: Computational material modeling, AD-Vol. 42/PVP-Vol. 294, ASME (Noor, A. K., Needleman, A., eds.), pp. 199–221 (1994).

  18. Coleman, B. D., Noll, W.: The thermodynamics of elastic materials with heat condution and viscosity. Arch. Rat. Mech. Anal.13, 167–178 (1963).

    Google Scholar 

  19. Müller, I.: On the entropy inequality. Arch. Rat. Mech. Anal.26, 118–141 (1967).

    Google Scholar 

  20. Aifantis, E. C.: A proposal for continuum with microstructure. Mech. Res. Comm.5, 139–145 (1978).

    Google Scholar 

  21. Dunn, J. E., Serrin, J. B.: On the thermomechanics of interstitial working. Arch. Rat. Mech. Anal.88, 95–133 (1985).

    Google Scholar 

  22. Šilhavý, M.: Thermostatics of non-simple materials. Czech. J. Phys. B34, 601–621 (1984).

    Google Scholar 

  23. Šilhavý, M.: Phase transitions in non-simple bodies. Arch. Rat. Mech. Anal.88, 135–161 (1985).

    Google Scholar 

  24. Sokolovskii, V. V.: The propagation of elastic-viscoplastic waves in bars. Dokl. Akad. Nauka SSSR60, 775–778 (1948) (in Russian).

    Google Scholar 

  25. Malvern, L. E.: The propagation of longitudinal waves of plastic deformation in a bar of materials exhibiting a strain rate effect. J. Appl. Mech.18, 203–208 (1951).

    Google Scholar 

  26. Cristescu, N., Suliciu, I.: Viscoplasticity. The Hague: Nijhoff 1982.

    Google Scholar 

  27. Suliciu, I., Şabac, M.: Energy estimates in one-dimensional rate-type viscoplasticity. J. Math. Anal. Appl.131, 354–372 (1988).

    Google Scholar 

  28. Fâciu, C., Mihâilescu-Suliciu, M.: The energy in one-dimensional rate-type semilinear viscoelasticity. Int. J. Solids Struct.23, 1505–1520 (1987).

    Google Scholar 

  29. Fâciu, C., Molinari, A.: Evolution of layered structures in a gradient-dependent viscoplastic material. J. Phys. IV6, 45–54 (1996).

    Google Scholar 

  30. Coleman, B. D., Owen, D. R.: On thermodynamics and intrinsically equilibrated materials. Annali Mat. Pura Appl. (IV)108, 189–199 (1976).

    Google Scholar 

  31. Mihâilescu-Suliciu, M., Suliciu, I.: Energy for hypoelastic constitutive equations. Arch. Rat. Mech. Anal.70, 168–179 (1979).

    Google Scholar 

  32. Gurtin, M. E., Williams, W. O., Suliciu, I.: On rate-type constitutive equations and the energy of viscoelastic and viscoplastic materials. Int. J. Solids Struct.16, 607–617 (1980).

    Google Scholar 

  33. Kratochvil, J., Dillon, O. W.: Thermodynamics of crystalline elastic-plastic materials as a theory with internal state variables. J. Appl. Phys.40, 3207–3217 (1969).

    Google Scholar 

  34. Kratochvil, J., Dillon, O. W.: Thermodynamics of crystalline elastic-viscoplastic materials. J. Appl. Phys.41, 1470–1479 (1970).

    Google Scholar 

  35. Coleman, B. D., Gurtin, M. E.: Thermodynamics with internal state variables. J. Chem. Phys.47, 597–613 (1967).

    Google Scholar 

  36. John, F.: Partial differential equations. Berlin Heidelberg New York: Springer 1982.

    Google Scholar 

  37. Molinari, I.: Instabilité thermoviscoplastique en cisaillement simple. J. Mech. Th. Appl.4, 659–684 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Făciu, C., Molinari, A. A non-local rate-type viscoplastic approach to patterning of deformation. Acta Mechanica 126, 71–99 (1998). https://doi.org/10.1007/BF01172800

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01172800

Keywords

Navigation