Skip to main content
Log in

On the total absolute curvature of closed curves in spheres

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

The total absolute curvature of a closed curve in a Euclidean space is always greater or equal to 2 (Fenchel's inequality,1929, [3], [1], [13]); especially for a knotted curve it is always greater than 4 (Fary-Milnor's inequality, 1949, [2], [7], [5], [4]).

For the total absolute curvature of closed curves in spheres no such lower bounds exist because there are closed geodesies. Here we derive similar bounds which depend on the length of the curve resp.the area of surfaces of disk-type bounded by the curve.

In order to prove these inequalities we start from the computation of the total absolute curvature as mean value of the number of critical points of certain level functions ([11],[12]); we use some topological considerations and Poincaré's integralgeometric formula for the computation of length resp. area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borsuk,M.: Sur la courbure totale des courbes fermeés. Ann.Soc. Pol.Math.20,251–265(1948)

    Google Scholar 

  2. Fary,J.: Sur la courbure totale d'une courbe gauche faisant un nœud. Bull.Soc.Math.France77,128–138(1949)

    Google Scholar 

  3. Fenchel,W.: Über Krümmung und Windung geschlossener Raumkurven. Math. Ann.101,238–252(1929)

    Google Scholar 

  4. Fenchel,W.: On the differential geometry of closed space curves. Bull.AMS57,44–54(1951)

    Google Scholar 

  5. Fox,R.H.:On the total curvature of some tame knots. Ann.of Math.52(nr.2),258–260(1950)

    Google Scholar 

  6. Hirsch,M.W.:Differential topology.GTM 33,2.Aufl.Berlin-Heidelberg--New York:Springer 1957

    Google Scholar 

  7. Milnor,J.W.:On the total curvature of knots. Ann.of Math.52,248–257(1950)

    Google Scholar 

  8. Santaló,L.A.:Integral geometry and geometric probability.Encyclop. of Math.and its Appl.,1.Aufl.,Vol.1,1976

  9. Schubert,H.: Über eine Num.Knoteninvariante. Math.Z.61,245–288(1954)

    Google Scholar 

  10. Spivak,M.:A Comprehenshive Introduction to Differential Geometry Vol.4.2nd edt.,Berkeley:Publish or Perish 1979

  11. Teufel,E.: Eine differentialtopologische Berechnung der Totalen Krümmung und Totalen Absolutkrümmung in der Sphärischen Differentialgeometrie. Manuscripta Math.31,119–147(1980)

    Google Scholar 

  12. Teufel,E.: Differential Topology and the Computation of Total Absolute Curvature. Math.Ann.258,471–480(1982)

    Google Scholar 

  13. Voss,K.:Eine Bemerkung über die Totalkrümmung geschlossener Raumkurven. Arch. Math,6,259–263(1955)

    Google Scholar 

  14. Whitney,H.:The singularities of a smooth n-Manifold in (2n-1)--Space. Ann.of Math.45(nr.2),247–293(1944)

    Google Scholar 

  15. Willmore,T.J., Saleemi,B.A.:Total absolute curvature of immersed manifolds. J.London Math.Soc.41,153–160(1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teufel, E. On the total absolute curvature of closed curves in spheres. Manuscripta Math 57, 101–108 (1986). https://doi.org/10.1007/BF01172493

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01172493

Keywords

Navigation