Skip to main content
Log in

Shape group theory of van der Waals surfaces

  • Papers
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this article we present a method for the study of shapes of general, asymmetric van der Waals surfaces. The procedure is simple to apply and it consists of two steps. First, the surface is decomposed into spherical domains, according to the interpenetration of the van der Waals atomic spheres. Each domain defines a topological object that is either a 2-manifold or some truncated 2-manifold. Second, we compute the homology groups for all the objects into which the surface is divided. These groups are topological and homotopical invariants of the domains, hence they remain invariant to conformational changes that preserve the essential features of these domains of decomposition. In particular, these homology groups do not depend explicitly on the molecular symmetry. Major rearrangements of the nuclear configurations, however, do alter the decomposition into spherical domains, and the corresponding variation of the homology groups can be followed easily under conformational rearrangements. We discuss a partitioning of the metric internal configuration spaceM into shape regions of van der Waals surfaces, which allows one to identify those rearrangements which introduce an essential change in shape and to distinguish them from those which do not alter the fundamental shape of the molecular surface. The dependence of the shape group partitioning ofM on the symmetry under permutation of nuclear changes is discussed briefly, considering a simple illustrative example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Langridge, T.E. Fortin, I.D. Kuntz and M.L. Connolly, Science 211 (1981)661.

    Google Scholar 

  2. P.K. Weiner, R. Langridge, J.M. Blaney, R. Schaefer and P.A. Kollman, Proc. Natl. Acad. Sci. U.S.A. 79 (1982)3754.

    Google Scholar 

  3. R.J. Feldman, D.H. Bing, B.C. Furie and D. Furie, Proc. Natl. Acad. Sci. U.S.A. 75 (1978)5409.

    Google Scholar 

  4. T. Porter, Comput. Graphies 12 (1978)282.

    Google Scholar 

  5. N.L. Max, Comput. Graphies 13 (1979)165.

    Google Scholar 

  6. P.A. Basch, N. Pattabiraman, C. Huang, T.L. Fortin and R. Langridge, Science 222 (1983)1325.

    Google Scholar 

  7. L.H. Pearl and A. Honegger, J. Mol. Graphics 1 (1983)9.

    Google Scholar 

  8. M.L. Connolly Mol. Graphics 3 (1985)19.

    Google Scholar 

  9. C. Hansch, R.-L. Li, J.M. Blaney and R. Langridge, J. Med. Chem. 25 (1982)777.

    Google Scholar 

  10. J.M. Blaney, E.C. Jorgensen, M.L. Connolly, T.E. Ferrin, R. Langridge, S.J. Oatley, J.M. Burridge and C.C.F. Blake, J. Med. Chem. 25 (1982)785.

    Google Scholar 

  11. E.H. Spanier,Algebraic Topology (McGraw-Hill, New York, 1966).

    Google Scholar 

  12. J.R. Munkres,Elements of Algebraic Topology (Addison-Wesley, Menlo Park, 1984).

    Google Scholar 

  13. P.G. Mezey, Int. J. Quant. Chem., Quant. Biol. Symp. 12 (1986)113.

    Google Scholar 

  14. P.G. Mezey, J. Comput. Chem. 8 (1987)462.

    Google Scholar 

  15. G.A. Arteca and P.G. Mezey, Int. J. Quant. Chem., Quant. Biol. Symp. 14 (1987)133.

    Google Scholar 

  16. P.G. Mezey, Int. J. Quant. Chem., Quant. Biol. Symp. 14 (1987)127.

    Google Scholar 

  17. G.A. Arteca, V.B. Jammal, P.G. Mezey, J.S. Yadav, M.A. Hermsmeier and T.M. Gund, J. Mol. Graphics 6 (1988)45.

    Google Scholar 

  18. G.A. Arteca and P.G. Mezey, J. Comput. Chem. 9 (1988)554.

    Google Scholar 

  19. G.A. Arteca and P.G. Mezey, J. Mol. Struct. Theochem. 166 (1988)11.

    Google Scholar 

  20. G.A. Arteca, V.B. Jammal and P.G. Mezey, J. Comput. Chem. 9 (1988)608.

    Google Scholar 

  21. B. Lee and F.M. Richards, J. Mol. Biol. 55 (1971)379.

    Google Scholar 

  22. F.M. Richards, Annu. Rev. Biophys. Bioeng. 6 (1977)151.

    Google Scholar 

  23. J. Greer and B.L. Bush, Proc. Nall. Acad. Sci. U.S.A. 75 (1978)303.

    Google Scholar 

  24. M.L. Connolly, Science 221 (1983)709.

    Google Scholar 

  25. P.G. Mezey, Int. J. Quant. Chem. 22 (1982)101.

    Google Scholar 

  26. P.G. Mezey, Mol. Phys. 47 (1982)121.

    Google Scholar 

  27. P.G. Mezey, J. Amer. Chem. Soc. 107 (1985)3100.

    Google Scholar 

  28. P.G. Mezey, Int. J. Quant. Chem., Quant. Biol. Symp. 17 (1983)137.

    Google Scholar 

  29. P.G. Mezey, Int. J. Quant. Chem. 26 (1984)983.

    Google Scholar 

  30. P.G. Mezey, Theor. Chien. Acta 63 (1983)9; ibid. 67(1985)43.

    Google Scholar 

  31. P.G. Mezey,Potential Energy Hypersurfaces (Elsevier, Amsterdam, 1987).

    Google Scholar 

  32. R.C. Weast (ed.),CRC Handbook of Chemistry and Physics, 63rd edition (CRC Press, Boca Ratón, 1983) p. D-195.

    Google Scholar 

  33. A. Bondi, J. Phys. Chem. 68 (1964)441.

    Google Scholar 

  34. A. Hopfinger, in:Conformational Properties of Macromolecules (Academic Press, New York, 1973).

    Google Scholar 

  35. P.G. Mezey, Math. Chem. 2 (1988)299; 325.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arteca, G.A., Mezey, P.G. Shape group theory of van der Waals surfaces. J Math Chem 3, 43–71 (1989). https://doi.org/10.1007/BF01171884

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01171884

Keywords

Navigation