Skip to main content
Log in

How to compute the Wiener index of a graph

  • Notes
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The Wiener index of a graphG is equal to the sum of distances between all pairs of vertices ofG. It is known that the Wiener index of a molecular graph correlates with certain physical and chemical properties of a molecule. In the mathematical literature, many good algorithms can be found to compute the distances in a graph, and these can easily be adapted for the calculation of the Wiener index. An algorithm that calculates the Wiener index of a tree in linear time is given. It improves an algorithm of Canfield, Robinson and Rouvray. The question remains: is there an algorithm for general graphs that would calculate the Wiener index without calculating the distance matrix? Another algorithm that calculates this index for an arbitrary graph is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A.V. Aho, J.E. Hopcroft and J.D. Unman,The Design and Analysis of Computer Algorithms (Addison-Wesley, Reading, MA, 1974).

    Google Scholar 

  2. M. Bersohn, A fast algorithm for calculation of the distance matrix of a molecule, J. Comput. Chem. 4 (1983)110.

    Article  CAS  Google Scholar 

  3. D. Bonchev, O. Mekenyan, G. Protić and N. Trinajstićf, J. Chromatogr. 176 (1979)149.

    Article  CAS  Google Scholar 

  4. J.A. Bandy and U.S.R. Marty,Graph Theory with Applications (North- Holland, New York, 1976).

    Google Scholar 

  5. E.R. Canfield, W.R. Robinson and D.H. Rouvray, Determination of the Wiener molecular branching index for the molecular tree, J. Comput. Chem. 6 (1985)598.

    Article  CAS  Google Scholar 

  6. A. Graovac and T. Pisanski, On the Wiener index of a graph, submitted for publication.

  7. E.L. Lawler,Combinatorial Optimization: Networks and Matroids (Halt, Rinehart and Winston, New York, 1976).

    Google Scholar 

  8. I. Motos and A.T. Balaban, Topological indices: Intercorrelations, physical meaning, correlational ability, Rev. Roumanie Chim. 26 (1981)593.

    Google Scholar 

  9. W.R. Müller, K. Szymanski, J.V. Knop and N. Trinajstić, An algorithm for construction of the molecular distance matrix, J. Comput. Chem. 8 (1987)170.

    Article  Google Scholar 

  10. C.H. Papadiruitriou and K. Steiglitz,Combinatorial Optimization: Algorithms and Complexity (Premise-Hall, Englewood Cliffs, NJ, 1982).

    Google Scholar 

  11. D. Papazova, M. Dimov and D. Bonchev, J. Chromatogr. 188 (1980)297.

    Article  CAS  Google Scholar 

  12. D.H. Rouvray, The role of' graph-theoretical invariants in chemistry, Congr. Numer 55 (1986)253.

    Google Scholar 

  13. D.H. Rouvray, Should we have designs on topological indices? in:Chemical Applications of Topology and Graph Theory, ed. R.B. King (Elsevier, Amsterdam, 1983) pp. 159–177.

    Google Scholar 

  14. D.H. Rouvray, Predicting chemistry from topology, Sci. Amer. 254 (1986)40.

    Article  Google Scholar 

  15. D.H. Rouvray, The role of topological distance matrix in chemistry, in:Mathematics and Computational Concepts in Chemistry, ed. N. Trinajstić (Horwood, Chichester, UK, 1986) Ch. 25, pp. 295–306.

    Google Scholar 

  16. D.H. Rouvray and B.C. Crafford, South Afr. J. Sci 72 (1976)74.

    Google Scholar 

  17. D.H. Rouvray and W. Tatong, Z. Naturforsch. 41a (1986)1238.

    CAS  Google Scholar 

  18. LT Stiel and G. Thodos, Amer. Inst. Chem. Eng. 18 (1962)527.

    Article  Google Scholar 

  19. M.M. Syslo, N. Deo and J.S. Kowalik,Discrete Optimization Algorithms (Prentice-Hall, Englewood Cliffs, NJ, 1983).

    Google Scholar 

  20. N. Trinajstić,Chemical Graph Theory, Vol. II (CRC Press, Florida, 1983) Ch, 4.

    Google Scholar 

  21. H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947)17.

    Article  CAS  Google Scholar 

  22. H. Wiener, I Chem. Phys. 15 (1947)766.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported in part by the Research Council of Slovenia, Yugoslavia.

This work was done while both authors were visiting the Simon Fraser University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohar, B., Pisanski, T. How to compute the Wiener index of a graph. J Math Chem 2, 267–277 (1988). https://doi.org/10.1007/BF01167206

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01167206

Keywords

Navigation