Skip to main content
Log in

The transition from alkali basalts to kimberlites: Isotope and trace element evidence from melilitites

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Eighteen Cenozoic melilitite samples from Spain, France, West Germany and Czechoslovakia have been analyzed for major and trace elements (including REE) together with their Sr and Nd isotopic compositions. Leaching experiments produced significant shifts of their87Sr/86Sr ratio indicative of a contamination by a crustal component. Most samples fall within the Sr-Nd mantle array with ɛNd values in the 1.5–6 range. These values are considered as minimum for the melilitite mantle source hence demonstrating its time integrated LRE depletion. The Ni and Cr contents of the samples are typical of primary magmas and exclude extensive crystallization of olivine and pyroxene in a closed system. However, the chemical relationships suggest that dilution of the liquids by mafic minerals of the conduits during their ascent has been important. The REE patterns show some variations which are interpreted by this dilution effect. Once normalized to Yb they are closely similar and perfectly distinguishable from those of alkali basalts and kimberlites. All of these rocks have Ce/Yb ratios which are high but distinctive for each rock type: 40 to 200 times the chondritic ratio for kimberlites, 20 to 30 for melilitites, 8 to 15 for alkali basalts. As contamination is likely to have modified somewhat the isotopic characteristics of most of these rocks, there is no overwhelming evidence that their source is chemically different. The Ba and Rb contents together with the REE patterns of the melilitites would constrain the degree of melting to be very small (<0.2%).

The calculation of batch melting and steady zone refining models suggests that kimberlites, melilitites and alkali basalts may have been derived by equilibration of deep melts with different upper mantle levels characterized by decreasing garnet/clinopyroxene ratios.

The strongly incompatible elements are enriched in the melt during its ascent by leaching of the wall rocks. For the steady zone refining model, the degree of melting concept loses its significance and the difficult requirement of extracting small liquid fractions from a molten source disappears.

Within the frame of this model, the preenrichment of the kimberlite, melilitite and alkali basalts source in incompatible elements by metasomatic fluids is no longer necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albarede F, Provost P (1977) Petrological and geochemical mass-balance equations: an algorithm for least-square fitting and general error analysis. Comput Geosci 3:309–326

    Google Scholar 

  • Allegre CJ, Dupré B, Lambret B, Richard P (1981) The subcontinental versus suboceanic debate, I Lead-Neodymium-Strontium isotopes in primary alkali basalts from a shield area: the Ahaggar volcanic suite. Earth Planet Sci Lett 52:85–92

    Google Scholar 

  • Allègre CJ, Dupré B, Richard P, Rousseau D, Brooks C (1982) Subcontinental versus suboceanic mantle, II Nd-Sr-Pb isotopic comparison with mid-ocean ridge tholeiites and the structure of the continental lithosphere. Earth Planet Sci Lett 57:27–34

    Google Scholar 

  • Basu AR, Tatsumoto M (1980) Nd isotopes in selected mantlederived rocks and minerals and their implications for mantle evolution. Contrib Mineral Petrol 75:43–54

    Google Scholar 

  • Basu AR, Tatsumoto M (1982) Nd isotopes in ultrabasic-basic rocks and mantle evolution (Abstract). 5th Int. Conf Geochron Cosmochron Isotope Geol, Nikko, Ext Abstr 17–18

  • Boettcher AL, O'Neil JR (1980) Stable isotope, chemical and petrographie studies of high-pressure amphiboles and micas: evidence for metasomatism in the mantle source region of alkali basalts and kimberlites. Am J Sci280A: 594–621

    Google Scholar 

  • Bultitude RJ, Green DH (1971) Experimental study of Crystalliquid relationships at high pressures in olivine nephelinite and basanite compositions. J Petrol 12:121–147

    Google Scholar 

  • Carlson RW, Lugmair GW, Macdougall JD (1981a) Columbia River volcanism: the question of mantle heterogeneity or crustal contamination. Geochim Cosmochim Acta 45:2483–2499

    Google Scholar 

  • Carlson RW, Lugmair GW, Macdougall JD (1981b) Crustal influence in the generation of continental flood basalts. Nature 289:160–162

    Google Scholar 

  • Cerrai E, Testa C (1963) Separation of rare earths by means of small columns of Kel-f supporting di(2-ethylhexyl) orthophosphoric acid. J Inorg Nucl Chem 25:1045–1050

    Google Scholar 

  • Chauvel C (1982) Géochimie isotopique (Nd, Sr) et géochimie des éléments traces des basaltes alcalins du Massif Central Français: contraintes pétrogénétiques et arguments en faveur du métasomatisme mantellique. Unpub Thesis, Univ Rennes

  • Chauvel C, Jahn B-M (1981) Nd and Sr isotopic composition and REE geochemistry of alkali basalts from the Massif Central, France (abstract). Terra Cognita Special Issue on 1st European Union Geosc Meet 78

  • Dawson JB (1980) Kimberlites and their xenolithes. Springer Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Eggler DH, Wendlandt RF (1979) Experimental studies on the relationship between kimberlite magmas and partial melting of peridotite. In: Boyd FR, Meyer HOA (ed) Kimberlites, Diatremes and Diamonds. Am Geophys Union 330–338

  • Evensen NM, Hamilton PJ, O'Nions RK (1978) Rare-earth abundances in chondritic meteoritis. Geochim Cosmochim Acta 42:1199–1212

    Google Scholar 

  • Feigenson MO, Hofmann AW, Sperra FJ (in press) Case studies on the origin of basalt. II. The transition from tholeiitic to alkalic volcanism on Kohala volcano, Hawaii. Contrib Mineral Petrol

  • Ferguson J, Martin H, Nicolaysen LO, Danchin RV (1975) Gross Brukkaros: a kimberlite-carbonatite volcano. Phys Chem Earth 9:219–234

    Google Scholar 

  • Fesq HW, Kable EJD, Gurney JJ (1975) Aspects of the geochemistry of kimberlites from the Premier Mine and other South African occurrences. Phys Chem Earth 9:687–707

    Google Scholar 

  • Frechen J (1963) Kristallisation, Mineralbestand, Mineralchemismus und Förderfolge der Mafitite vom Dreiser Weiher in der Eifel. N Jb Mineral MH

  • Frey FA, Green DH, Roy SD (1978) Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data. J Petrol 19:463–513

    Google Scholar 

  • Frey FA, Haskin LA, Haskin MA (1971) Rare earth abundances in some ultramafic rocks. J Geophys Res 76:2057–2070

    Google Scholar 

  • Gast PW (1968) Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochim Cosmochim Acta 32:1057–1086

    Google Scholar 

  • Grutzeck M, Kridelbaugh S, Weill D (1974) The distribution of Sr and REE between diopside and silicate liquid. Geophys Res Lett 1:273–275

    Google Scholar 

  • Gurney JJ, Harris JW, Rickard RS (1979) Silicate and oxide inclusions in diamonds from the Finsch kimberlite pipe. In: Boyd FR, Meyer HOA (ed) Kimberlites, Diatremes and Diamonds. Am Geophys Union Wash 1–15

  • Harris PG (1957) Zone refining and the origin of potassic basalts. Geochim Cosmochim Acta 12:195–208

    Google Scholar 

  • Harris PG, Middlemost AK (1969) The evolution of kimberlites. Lithos 3:77–88

    Google Scholar 

  • Haskin LA, Haskin MA, Frey FA, Wildeman TR (1968) Relative and absolute terrestrial abundances of the rare earths. Proc Symp Intern Assoc Geochem Cosmochem, Paris 1967, Pergamon, NY 889–912

    Google Scholar 

  • Hernandez J (1976) Données nouvelles sur la composition minéralogique de la néphélinite de Marcoux (Forez). Bull Soc Fr Mineral Cristallogr 99:61–66

    Google Scholar 

  • Hofmann AW, White WM (1982) Mantle plumes from ancient oceanic crust. Earth Planet Sci Letters 57:421–436

    Google Scholar 

  • Horn P, Lippolt HJ, Todt W (1972) K-Ar Bestimmungen on Tertiären Vulkaniten des Oberrheingrabens. Eclogae Geol Helv 65:131–155

    Google Scholar 

  • Ibarrola E, Brandle JL (in press) Estudio comparativo de melilitas en rocas ultramaficas de los diferentes “provincias volcanicas” espanolas. Departamento de Petrologia y Geoquimica Instituto “Lucas Mallada” CSIC, 1291–1318

  • Javoy M (1970) Utilisation des isotopes de l'oxygène en magmatologie. Unpub Thesis Fac Sci Paris

  • Kay RW (1979) Zone refining at the base of lithospheric plates: a model for a steady-state asthenosphere. Tectonophys 55:1–9

    Google Scholar 

  • Kay R, Gast PW (1973) The rare earth content and origin of alkali-rich basalts. J Geol 81:653–682

    Google Scholar 

  • Kramers JD, Smith CB, Lock NP, Harmon RS, Boyd FR (1981) Can kimberlites be generated from an ordinary mantle? Nature 291:53–56

    Google Scholar 

  • Krause O (1969) Die melilith-Nephelinite des Hegaus. Unpub Thesis Univ Tübingen

  • Lorenz V (1979) Phreatomagmatic origin of the olivine melilitite diatremes of the Swabian Alps, Germany. In: Boyd FR, Meyer HOA (ed) Kimberlites, Diatremes and Diamonds. Am Geophys Union Wash 354–363

  • Loubet M, Bernat M, Javoy M, Allegre CJ (1972) Rare earth contents in carbonatites. Earth Planet Sci Lett 14:226–232

    Google Scholar 

  • McIver JR, Ferguson J (1979) — Kimberlitic, melilititic, trachytic and carbonatite eruptives at Saltpetre Kop, Sutherland, South Africa. In: Boyd FR, Meyer HOA (ed), Kimberlites, Diatremes and Diamonds. Am Geophys Union Wash 111–128

  • Meyer HOA, Tsai HM (1976) The nature and significance of mineral inclusions in natural diamonds. Mineral Sci Eng News 8:242–261

    Google Scholar 

  • Mitchell RH (1970) Kimberlites and related rocks — a critical reappraisal. J Geol 78:868–704

    Google Scholar 

  • Mitchell RH, Brunfelt AO (1975) Rare earth element geochemistry of kimberlites. Phys Chem Earth 9:671–686

    Google Scholar 

  • Mysen B (1979) Trace element partitioning between garnet peridotite minerals and water-rich vapor: experimental data from 5 to 30 kbar. Am Mineral 64:274–287

    Google Scholar 

  • Norry MJ, Truckle PH, Lippard SJ, Hawkesworth CJ, Weaver SD, Marringer GF (1980) Isotopic and trace element evidence from lavas, bearing on mantle heterogeneity beneath Kenya. Phil Trans Roy Soc London, A 297:259–271

    Google Scholar 

  • O'Nions RK, Hamilton PJ, Evenson NM (1977) Variations in143Nd/144Nd and87Sr/86Sr ratios in oceanic basalts. Earth Planet Sci Lett 34:13–22

    Google Scholar 

  • Pfann WG (1952) Principles of zone-melting. J Met 4:747–753

    Google Scholar 

  • Philpotts JA, Schnetzler CC (1970) Phenocryst matrix partition coefficients for K, Rb, Sr and Ba with applications to anorthosite and basalt genesis. Geochim Cosmochim Acta 34:307–322

    Google Scholar 

  • Philpotts JA, Schnetzler CC, Thomas HH (1972) Petrogenetic implications for some new geochemical data on eclogitic and ultrabasic inclusions. Geochim Cosmochim Acta 36:1131–1166

    Google Scholar 

  • Polve M, Allegre CJ (1981) Orogenic Iherzolite complexes studied by87Rb/87Sr: a clue to understand the mantle convection process? Earth Planet Sci Lett 51:71–93

    Google Scholar 

  • Richard P, Shimizu N, Allegre CJ (1976)143Nd/146Nd, a natural tracer: an application to oceanic basalts. Earth Planet Sci Lett 31:269–278

    Google Scholar 

  • Rousseau D, Allegre CJ, Dawson JB (1981) New isotopic constraints on the carbonatite origin (Abstract). Terra Cognita Spec Issue on 1st European Union Geosci Meet 83

  • Schilling JG, Winchester JW (1967) Rare earth fractionation and magmatic processes. In: Runcorn SK (ed) Mantle of the Earth and terrestrial planets. Wiley, London, 267–283

    Google Scholar 

  • Shimizu N (1975) Rare earth elements in garnets and clinopyroxenes from garnet Iherzolite nodules in kimberlites. Earth Planet Sci Lett 25:26–32

    Google Scholar 

  • Shimizu N, Kushiro I (1975) The partitioning of rare earth elements between garnet and liquid at high pressures: preliminary experiments. Geophys Res Lett 2:413–416

    Google Scholar 

  • Shrbeny O, Machacek V (1974) Microelements in melilitic rocks of Northern Bohemia. Casopis pro Mineralogii a Geologii 19:15–25

    Google Scholar 

  • Sick U (1970) Über Melilith-Nephelinite der Schwäbischen Alb. Unpub Thesis Univ Tübingen

  • Staudigel H, Zindler A (1978) Nd and Sr isotope compositions of potassic volcanics from the East Eifel, Germany: implications for mantle source region (Abstract). Geol Soc Am Abstr Progr10:497

    Google Scholar 

  • Stettler A, Allegre CJ (1976)87Rb/87Sr constraints on the genesis and evolution of the Cantal continental volcanic system (France). Earth Planet Sci Lett 44:269–278

    Google Scholar 

  • Taylor HP, Jr, Turi B (1976) High18O igneous rocks from the Tuscan magmatic province, Italy. Contrib Mineral Petrol 55:33–54

    Google Scholar 

  • Treuil M, Varet J (1973) Critères volcanologiques, pétrologiques et géochimiques de la genèse et de la différenciation des magmas basaltiques: exemple de l'Afar Bull Soc Géol France XV:505–540

    Google Scholar 

  • Velde D, Thiebaut J (1973) Quelques précisions sur la constitution minéralogique de la néphélinite à olivine et mélilite d'Essey-laCôte (Meurthe-et-Moselle). Bull Soc Fr Mineral Cristallogr 96:298–302

    Google Scholar 

  • Wass SY, Rogers NW (1980) Mantle metasomatism-precursor to continental alkaline volcanism. Geochim Cosmochim Acta 44:1811–1823

    Google Scholar 

  • Wasserburg GJ, Jacobsen SB, de Paolo DJ, McCulloch MT, Wen T (1981) Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochim Cosmochim Acta 45:2311–2323

    Google Scholar 

  • Wendlandt RF, Harrison WJ (1979) Rare earth partitioning between immiscible carbonate and silicate liquids and CO2 vapour: Results and implications for the formation of light rare earth-enriched rocks. Contrib Mineral Petrol 69:409–419

    Google Scholar 

  • Wimmenauer W (1967) Igneous rocks of the Rhinegraben. The Rhinegraben Progress Rept Abh Geol Landesamt Baden-Wurtemberg 6:144–148

    Google Scholar 

  • Wimmenauer W (1974) The alkaline province of Central Europe and France. In: Sørensen H (ed) The alkaline rocks. J Wiley, London, 238–271

    Google Scholar 

  • Wyllie PJ (1979) Kimberlite magmas from the system PeridotiteCO2-H2O. In: Boyd FR, Meyer HOA (ed) Kimberlites, Diatremes and Diamonds. Am Geophys Union Wash:319–329

  • Wyllie PJ (1980) The origin of kimberlite. J Geophys Res 85:6902–6910

    Google Scholar 

  • Yoder HSJr (1975) Relationship of melilite-bearing rocks to kimberlite: a preliminary report on the system akermanite-CO2. Phys Chem Earth 9:883–894

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alibert, C., Michard, A. & Albarède, F. The transition from alkali basalts to kimberlites: Isotope and trace element evidence from melilitites. Contr. Mineral. and Petrol. 82, 176–186 (1983). https://doi.org/10.1007/BF01166612

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01166612

Keywords

Navigation