Skip to main content
Log in

Alkaline and ultramafic carbonate lamprophyres in Central Bohemian carboniferous basins, Czech Republic

Alkalische und ultramafische Karbonat-Lamprophyre der zentralen böhmischen Karbonbecken, Tschische Republik

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Dykes of alkaline and ultramafic carbonate lamprophyres (monchiquite-ouachitite and aillikite) intrude the Carboniferous sediments of Central Bohemia. Their characteristic feature is the presence of substantial amounts of a sodalite group mineral (presumably haüyne), carbonate and barite. Isotopic compositions ofδ 13C (−3.4 to −6.2‰) andδ 18O ( + 13.5 to + 15.9‰) indicate that the carbonate is of primary magmatic origin and that fluids were formed at temperatures of 500 to 350°C. High contents of CO2 (3.6 to 17.6 wt.%) and incompatible elements, high LREE/HREE ratios (30.0 to 57.7), and low Rb/Sr (0.025 to 0.078) and87Sr/86Sr (0.7038 to 0.7042) ratios suggest the ultramafic lamprophyres are related to deep-seated carbonated magmas of mantle origin. Low degree of partial melting ( < 1%) of the mantle peridotite is envisaged, with additional transport of fluids rich in incompatible elements into the crustal chamber. Alkaline lamprophyres are fractionated derivatives which originated from the same source. Magma intrusion from different levels of a magma chamber into fracture zones under horizontal tension without a central intrusion could result in variability in lamprophyre composition (cumulates or evolved derivatives).

Zusammenfassung

Alkalische und ultramafische Karbonat-Lamprophyrgänge (Monchiquit-Ouachitit und Aillikit) intrudieren in karbonische Sedimente Zentralböhmens. Sie sind charakterisiert durch das Auftreten von beträchtlichen Mengen an Mineralen der Sodalith-Gruppe (v.a. Haüyn), Karbonaten und Baryt. Ihre Isotopenzusammensetzung von 13C (−3.4 bis −6.2‰) undδ 18O (13.5 bis 15.9‰) zeigt, daß die Karbonate primär magmatischen Ursprungs sind und daß assoziierte Fluide in einem Temperaturbereich von 350 bis 500°C gebildet wurden. Hohe Gehalte an CO2 (3.6 bis 17.6 Gew. %), inkompatiblen Elementen, hohe LREE/HREE-Verhältnisse (30.0 bis 57.7), sowie niedrige Rb/Sr—(0.025 bis 0.078) und87Sr/86Sr-(0.7038 bis 0.7042) Verhältnisse lassen vermuten, daß die ultramafischen Lamprophyre mit karbonatischen Magmen des Mantels in Beziehung stehen. Eine niedrige Aufschmelzungsrate ( < 1%) von Mantelperidotit mit zusätzlichem Transport von, an inkompatiblen Elementen angereicherten Fluiden, in die krustale Magmenkammer wird diskutiert. Alkalische Lamprophyre sind als stärker fraktionierte Magmen, die derselben Quelle entstammen, zu verstehen. Die Intrusion der aus verschiedenen Bereichen der Magmenkammer stammenden Magmen in durch horizontale Dehnung verursachte Störungszonen könnte das Fehlen eines zentralen Intrusionskörpers und die unterschiedliche Zusammensetzung der Lamprophyre (Kumulate oder entwickelte Derivate) erklären.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alibert C, Michard DH, Albarède F (1983) The transition from alkali basalts to kimberlites: Isotope and trace element evidence from melilitites. Contr Mineral Petrology 82: 176–186

    Google Scholar 

  • Andersen T (1987) Mantle and crustal components in a carbonatite complex, and the evolution of carbonatite magma: REE and isotopic evidence from the Fen Complex, Southeast Norway. Chem Geol (Isotope Geosci Sect) 65: 147–166

    Google Scholar 

  • Becker RH, Clayton RN (1976) Oxygen isotope study of a Precambrian banded iron formation, Hamersley Range, Western Australia. Geochim Cosmochim Acta 40: 1153–1165

    Google Scholar 

  • Brousse R, Nativel P (1963) Une picrite-ankaratrite lamprophyrique, près de Saint Micaud (Saône-et-Loire). C R Acad Sci Paris 257: 479–481

    Google Scholar 

  • Cullers RL, Graf JL (1984) Rare earth elements in igneous rocks of the continental crust: predominantly basic and ultrabasic rocks. In:Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, 237–274 pp

    Google Scholar 

  • Dawson JB, Smith JV (1975) Chemistry and origin of phlogopite megacrysts in kimberlite. Nature 253: 336–338

    Google Scholar 

  • Deines P, Gold DP (1973) The isotopic composition of carbonatite and kimberlite carbonates and their bearing on the isotopic composition of deep-seated carbon. Geochim Cosmochim Acta 37: 1709–1733

    Google Scholar 

  • Dobosi G, Horváth I (1988) High- and low-pressure cognate clinopyroxenes from alkali lamprophyres of the Velence and Buda Mountains, Hungary. N Jb Mineral Abh 158: 241–256

    Google Scholar 

  • Duda A, Schmincke HU (1985) Polybaric differentiation of alkali basaltic magmas: evidence from green-core clinopyroxenes (Eifel, FRG). Contr Mineral Petrol 91: 340–353

    Google Scholar 

  • Foley SF, Malpas J (1984) Petrology of the alkaline-ultrabasic lamprophyres of Aillik Bay, Labrador. Can J Earth Sci 43: 128–142

    Google Scholar 

  • Frey FA, Green DH, Doy SD (1978) Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data. J Petrol 19: 463–513

    Google Scholar 

  • Gruner B (1991) Ultramafic lamprophyres and alkaline lamprophyres from Delitzsch, Saxony. Abs Symp Central European Alkaline Volcanic Rocks, Praha 1991

  • Hansen K (1980) Lamprophyres and carbonatitic lamprophyres related to rifting in the Labrador Sea. Lithos 13: 145–152

    Google Scholar 

  • Hladiková J, Čadek J, Šmejkal V, Vařin I (1979) Isotopie study of oxygen and carbon in carbonates of the Bohemian Cretaceous Basin. Sbor Geol Věd Ř LG 20: 37–48 (in Czech)

    Google Scholar 

  • Horváth I, Darida-Tichy M, Ódor L (1983) Magnesitiferous dolomitic carbonate (beforsite) dyke rock from the Velence Mountains. Ann Rep Hung Geol Inst 1981: 369–388 (in Hungarian)

    Google Scholar 

  • Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8: 523–548

    Google Scholar 

  • Jelinek E, Skouček J, Tvrdý J, Ulrych J (1989) Geochemistry and petrology of alkaline dyke rocks of the Roztoky volcanic centre, České středohoři Mountains, CSSR. Chem Erde 49: 201–217

    Google Scholar 

  • Kopecký L (1987-1988) Young volcanism of the Bohemian Massif (structural geological and volcanological study) 1–6. Geol hydrometalurgie uranu 11–12: 30–67,3–44,3–40,3–56, 3–40, 3–40 (in Czech)

    Google Scholar 

  • Kresten P (1980) The Alnö complex: Tectonics of dyke emplacement. Lithos 13: 153–158

    Google Scholar 

  • Kresten P, Ahman E, Brunfelt AO (1981) Alkaline ultramafic lamprophyres and associated carbonatite dykes from Kalix area, northern Sweden. Geol Rdsch 70: 1215–1231

    Google Scholar 

  • Kubovics I (1985) Mesozoic magmatism of the Transdanubian Mid-Mountains. Acta Geol Hung 28: 141–164

    Google Scholar 

  • Kubovics I, Szabó Cs, Sólymos K (1989) Geochemistry of xenoliths of lamprophyre dykes (Alcsutdoboz, Hungary). N Jb Mineral Abh 161: 171–191

    Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zannetin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27: 745–750

    Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18: 849–857

    Google Scholar 

  • Mitchell R, Janse AJ (1982) A harzburgite-bearing monchiquite from Wawa, Ontario. Can Mineral 20: 211–216

    Google Scholar 

  • Mori T, Green DH (1975) Pyroxenes in the System Mg2Si2O6-CaMgSi2O6 at the high pressure. Earth Planet Sci Lett 26: 277–286

    Google Scholar 

  • Morimoto N (1988) Nomenclature of pyroxenes. Am Mineral 73: 535–550

    Google Scholar 

  • Nelson DR, Chivas AR, Chappel BW, McCulloch MT (1988) Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochim Cosmochim Acta 52: 1–17

    Google Scholar 

  • Northrop DA, Clayton RN (1966) Oxygen-isotope fractinations in systems containing dolomite. J Geol 74: 174–196

    Google Scholar 

  • Robert JL (1976) Titanium solubility in synthetic phlogopite solid solutions. Chem Geol 17: 213–227

    Google Scholar 

  • Rock NMS (1979) Petrology and origin of the type monchiquites and associated lamprophyres of Serra de Monchique, Portugal. Trans Edinburgh Geol Soc. 70: 149–170

    Google Scholar 

  • Rock NMS (1986) The nature and origin of ultramafic lamprophyres: alnöites and allied rocks. J Petrol 27: 155–196

    Google Scholar 

  • Rock NMS (1991) Lamprophyres. Blackie Glasgow London, Van Nostrand Reinhold, New York, 285 pp

    Google Scholar 

  • Řanda Z, Benada J, Kunciř J, Vobecký M, Frána J (1972): Radioanalytical methods for nondestructive analysis of lunar samples. J Radioanal Chem 11: 305–337

    Google Scholar 

  • Schleicher H, Keller J, Kramm U (1990) Isotope studies on alkaline volcanics and carbonatites from the Kaiserstuhl, Federal Republic of Germany. Lithos 26: 21–35

    Google Scholar 

  • Skoćek V, Šmejkal V, Král J, Hladíková J (1977) Isotopic composition of carbonates and sulphates from the Permo-Carboniferous of central Bohemia and the Krkonoše-pied-mont Basin. Věst Ústř Úst Geol 52: 1–11

    Google Scholar 

  • Streckeisen A (1979) Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites, and melilitic rocks: Recommendation and suggestion of the IUGS Subcommission on the systematic of igneous rocks. Geology 7: 331–335

    Google Scholar 

  • Taylor HP jr, Frenchen J, Degens ET (1976) Oxygen and carbon isotope studies of carbonatites from the Laacher district, West Germany and Alnö district, Sweden. Geochim Cosmochim Acta 31: 407–430

    Google Scholar 

  • Thompson RN (1974) Some high-pressure pyroxenes. Mineral Mag 39: 768–778

    Google Scholar 

  • Ulrych J, Pivec E, Fiala J, Lang M (1983) Petrology of the alkaline subvolcanic rocks from the Roztoky area (Ceské středohoři Mts.). Rozpr Čs Akad Véd R mat přír Véd, Academia Praha, 84 pp

  • Ulrych J, Povondra P, Rutšek J, Pivec E (1988) Melilitic and melilite-bearing subvolcanic rocks from the Ploučnice River region, Czechoslovakia. Acta Univ Carol Geol: 195–231

  • Wand U, Stiehl G, Rölling G, Mühle K, Haase G, Gerstenberger H (1990) C, O, N and Sr isotope characteristics of carbonatites from the Central German Crystalline Zone, GDR. Proc 5th Working Meeting Isotopes in Nature, Leipzig 1989, 421–436 pp

  • Wimmenauer W (1974) The alkaline province of central Europa and France. In:Sörensen H (ed) The Alkaline Rocks, John Wiley and Sons London, 238–271 pp

    Google Scholar 

  • Zbánek J (ed) (1991) Final Report on Black Coal Exploration in the Mělnik-Benátky nad Jizerou area. Unpubl Rep, Geoindustria GMS, Prague, 1900 pp (in Czech)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 8 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulrych, J., Pivec, E., Zák, K. et al. Alkaline and ultramafic carbonate lamprophyres in Central Bohemian carboniferous basins, Czech Republic. Mineralogy and Petrology 48, 65–81 (1993). https://doi.org/10.1007/BF01164909

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01164909

Keywords

Navigation