Skip to main content
Log in

Platinum mineralization in the Alaskan-type intrusive complexes near Fifield, New South Wales, Australia part 1. platinum-group minerals in clinopyroxenites of the Kelvin Grove prospect, owendale intrusion

Platin-Vererzung in intrusiven Komplexen des Alaska-Types bei Fif eld, New South. Wales, Australien Ted 1. Platingruppen-Minerale in Klinopyroxeniten des Kelvin Grove Prospektes, Owendale Intrusion

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Several Alaskan-type complexes intrude metasedimentary rocks of the Cambro-Ordovician Girilambone Group near Fifield, New South Wales, Australia. These intermediate to ultramafic circular intrusives, emplaced during the Devonian, are composed of monzodiorite, gabbro-norite, clinopyroxenite, hornblendite, peridotite and dunite. Several types of PGE mineralization associated with these complexes are known. A new type described here occurs within pegmatoid, biotite- and magnetite-poor clinopyroxenites (“P-units”) which form irregular lenses and vein-like bodies within biotite- and magnetite-rich, fine grained clinopyroxenites. The mineralized "P-units" are not enriched in base metal sulphides with respect to the surrounding barren clinopyroxenites.

The following PGM were identified: erlichmanite, isoferroplatinum, tetraferroplatinum, cooperite, cuprorhodsite, malanite, geversite, sperrylite, stumpflite, and several unidentified palladium antimonides. The early PGM (erlichmanite, (Pt-Fe) alloys, cooperite) were deposited from a fluid-rich system slightly before the end of clinopyroxene crystallization. The early mineralization stages are characterized by equilibrium crystallization whose order corresponds to the stability of PGE-sulphides as a function of temperature and fS2. Late PGMs are dominated by sperrylite-geversite solid solution resulting from the reaction of early PGM with a fluid phase. These minerals extensively replace cooperite and locally remobilize the PGE stock. Isoferroplatinum appears as a reaction product during this metasomatic replacement indicating a high iron activity in the fluid phase. The deposition of PtSb2 preceded that of PtAs2. Sperrylite and geversite are later than exsolution ilmenite lamellae in the interstitial Cr-rich magnetite.

Base metal sulphides are very rare, slightly later than PtAS2-PtSb2. Cobalt pentlandite and cobaltian pentlandite are the most common species, accompanied by pyrrhotite, pyrite, chalcopyrite, sphalerite and cobaltite. They are extensively replacing cooperite, but are in equilibrium with geversite-sperrylite.

The presence of the equilibrium association OsS2 + PtS implies a maximum temperature of 860°C, while the composition of cobalt-rich pentlandite indicates the highest stability limit of 670–710°C. Thus the temperature range of the formation of the Kelvin Grove mineralization can be estimated at about 850 to 650°C. The mineralization originated in a fluid-rich system which lowered the crystallization temperature of clinopyroxene. The precipitation of PGM is probably related to the appearance of a reducing fluid phase during final evolution stages of “P-units”, themselves emplaced in the most oxidized pyroxenites of the Owendale Complex.

Zusammenfassung

Intermediäre his ultrarnafische, konzentrisch gebaute Intrusionen des Alaska-Types intrudierten im Devon metasedimentare Gesteine der Karnbro-Ordovizischen Girilambone Gruppe in der Ndhe von Fifield, New South Wales, Australien. Sie bestehen aus Monzodioriten, Gabbro-Noriten, Klinopyroxeniten, Hornblenditen, Peridotiten und Duniten. Mit diesen sind verschiedene Typen von Platin-Vererzung assoziiert. Ein neuer Typ, der hier beschrieben wird, tritt in Pegmatoiden, Biotit und Magnetit-armen Klinopyroxeniten (“P-Einheiten”) auf, die unregelmäßige Linsen und gangförmige Körper innerhalb Biotit- und Magnetit-reicher, feinkörniger Klinopyroxenite bilden. Die mineralisierten "P-Einheiten" sind im Vergleich zu den sic umgebenden erzfreien Klinopyroxeniten nicht mit Buntmetall-Sulfiden angereichert.

Folgende PGM wurden bestimmt: Erlichmanit, Isoferroplatinum, Tetraferroplatinum, Cooperit, Cuprorhodsit, Malanit, Geversit, Sperrylit, Stumpflit, und einige Palladium-Antimonide bisher nicht bekannter Zusammensetzung. Die frühen PGM (Erlichmanit, (Pt-Fe) Legierung, Cooperit) wurden von einem fluid-reichen System kurz vor dem Ende der Klinopyroxen-Kristallisation abgesetzt. Die fruhen Vererzungsstadien sind durch Gleichgewichts-Kristallisation charakterisiert, deren Abfolge der Stabilität der PGE-Sulfide als einer Funktion von Temperatur und fS2 entspricht. Spdtere PGM werden von Sperrylit-Geversit Mischreihen dominiert, die aus der Reaktion früh gebildeter PGM mit einer fluiden Phase entstanden sind. Diese Minerale verdrangen Cooperit extensiv und rernobilisieren lokal das Reservoir an PGE. Isoferroplatin erscheint als ein Reaktionsprodukt während dieser Phase metasomatischer Verdrdngung; es weist auf hohe Eisenaktivität in der fluiden Phase hin. Der Absatz von PtSb2 erfolgte vor dem von PtAs2, Sperrylit und Geversit sind junger als Entmischungslamellen von Ilmenit im chromreichen Magnetit der Matrix.

Buntmetallsulfide sind außerordentlich selten, und etwas junger als PtAs2-PtSb2 gebildet. Kobalt-Pentlandit und Kobalt-führender Pentlandit sind die verbreitetsten Typen und werden von Pyrrhotit, Pyrit, Kupferkies, Zinkblende und Kobaltit begleitet. Sie verdrangen extensiv den Cooperit, sind aber im Gleichgewicht mit Geversit-Sperrylit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agnew PD (1987) The petrology and geochemistry of the Tout and Owendale complexes, Fifield, N.S.W. B.Sc.Thesis, University of New South Wales 1987, 209p

  • Alapieti TT, Lahtinen JJ (1986) Stratigraphy, petrology, and platinum-group element mineralization of the Early Proterozoic Penikat layered intrusion, northern Finland. Econ Geol 81: 1126–1136

    Google Scholar 

  • Augé T (1988) Platinum-group minerals in the Tiébaghi and Vourinos ophiolitic complexes: genetic implications. Canad Mineral 26: 177–192

    Google Scholar 

  • Barron LM, Ohnenstetter M, Johan Z, Slansky E (in preparation) Platinum mineralization in the Alaskan-type intrusive complexes near Fifield, N.S.W., Australia. Part 3. Petrology of the Owendale complex

  • Begizov VD, Zavyalov EN, Khvostova VP (1976) Minerals of the erlichmanite-laurite and hollingworthite-irarsite series from Urals placers. Zap Vses Min Obsch 105: 213–218 (in Russian)

    Google Scholar 

  • Begizov VD, Borisenko LF, Uskov ED (1975) Sulphides and natural solid solutions of PGE from ultramafic rocks of the Gusevorsk massif (the Urals). Dokl Akad Nauk SSSR 225: 1408–1411 (in Russian)

    Google Scholar 

  • Bowman HN, Richardson SJ, Dolanski J (1982) Narromine 1 : 250,000 metallogenic map SI 55-3: Mine data sheets and metallogenic study. N.S.W. Geol Surv Sydney 1982, 337p

  • Brynard HJ, de Villiers JPR, Viljoen EA (1976) A mineralogical investigation of the Merensky reef at the Western Platinum Mine, near Marikana, South Africa. Econ Geol 71: 1299–1307

    Google Scholar 

  • Buddington AF, Lindsley DH (1964) Iron-titanium oxide minerals and synthetic equivalents. J Petrol 5: 310–357

    Google Scholar 

  • Cabri LJ, Feather CE (1975) Platinum-iron alloys: a nomenclature based on a study of natural and synthetic alloys. Canad Mineral 13: 117–126

    Google Scholar 

  • Cabri LJ, Laflamme JHG (1981) Analyses of minerals containing platinum-group elements. In: Cabri LJ (ed) Platinum-group elements: mineralogy, geology, recovery, CIM spec vol 23:151–173

  • Cabri LJ, Laflamme JHG, Stewart JM, Turner K, Skinner BJ (1978) On cooperite, braggite and vysotskite. Amer Mineral 63: 832–839

    Google Scholar 

  • El Boragy M, Schubert K (1971) Ober einigen Variäten des NiAs-Familie in Mischungen des Palladiums mit B-Elementen. Z Metallkunde 62: 314–323

    Google Scholar 

  • Evans HT Jr, Milton C, Chao ECT, Adler I, Mead C, Ingram B, Berner RA (1964) Valeriite and the new iron sulfide, mackinawite. US Geol Surv Prof Paper 475-D: 64–69

    Google Scholar 

  • Feather CE (1976) Mineralogy of platinum-group minerals in the Witwatersrand, South Africa. Econ Geol 71: 1399–1428

    Google Scholar 

  • Ferrario A, Garuti G (1988) Platinum-group minerals in chromite-rich horizons of the Niquelandia complex (Central Goias, Brazil). In:Prichard HM, Potts PJ, Bowles JFW, Cribb SJ (eds) Geo-Platinum 87, Elsevier App Sc, London and New York, pp 261–272

    Google Scholar 

  • Furuseth S, Selte K, Kjekshus A (1967) On the solid solubility and structural properties of PdAs2-xSbx, PtP2-xAsx, PtP2-xSbx, PtP2-xBix, PtAs2-xSbx, PtAs2-xBix, PtSb2-xBix, Pd1-m.PtmAs2, Pd1-mPtmSb2, Pd1-mAumSb2, and Pt1-mAumSb2. Acta Chem Scand 21: 527–536

    Google Scholar 

  • Genkin AD, Evstigneeva TL (1986) Associations of platinum-group minerals of the Noril'sk copper- nickel sulfide ores. Econ Geol 81: 1203–1212

    Google Scholar 

  • Hansen M, Anderko K (1958) Constitution of binary alloys. McGraw-Hill Book Co Inc, New York, Toronto, London, 1305p

    Google Scholar 

  • Harris DC, Nickel EH (1972) Pentlandite compositions and associations in some mineral deposits. Canad Mineral 11: 861–878

    Google Scholar 

  • Hiemstra SA (1979) The role of collectors in the formation of platinum deposits in the Bushveld complex. Canad Mineral 17: 469–482

    Google Scholar 

  • Johan Z, Picot P (1972) La stumpflite, Pt(Sb, Bi), un nouveau mineral. Bull Soc fr Mineral Cristallogr 95: 610–613

    Google Scholar 

  • Kingston GA, El-Dosuky BT (1982) A contribution on the platinum-group mineralogy of the Merensky reef at the Rustenburg Platinum Mine. Econ Geol 77: 1367–1384

    Google Scholar 

  • Kissin SA (1974) Phase relations in a portion of the Fe-S system. PhD Thesis, University of Toronto, 1974

  • Kissin SA, Scott SD (1972) Phase relations of intermediate pyrrhotites (abstr). Econ Geol 67: 1007

    Google Scholar 

  • Kuovo O, uhma M, Vuorelainen Y (1959) A natural cobalt analogue of pentlandite. Amer Mineral 44: 897–900

    Google Scholar 

  • Legendre O, Augé T (1986) Mineralogy of platinum-group mineral inclusions in chromitites from different ophiolitic complexes. In: Gallagher MJ, Ixer RA, Neary CR, Prichard HM (eds) Metallogeny of the basic and ultrabasic rocks. The Inst Mining Metall London, pp 361–372

  • Merkle RKW, von Gruenewaldt G (1986) Compositional variation of Co-rich pentlandite: relation to the evolution of the Upper zone of the Western Bushveld complex, South Africa. Canad Mineral 24: 529–546

    Google Scholar 

  • Mostert AB, Hofmeyr PK, Potgieter GA (1982) The platinum-group mineralogy of the Merensky reef at the Impala Platinum Mines, Bophuthatswana. Econ Geol 77: 1385–1394

    Google Scholar 

  • Murray CG (1972) Zoned ultramafic complexes of the Alaskan-type: feeder pipes of andesitic volcanoes. Geol Soc Amer Inc Mem 132: 313–335

    Google Scholar 

  • Naldrett AJ, Cabri LJ (1976) Ultramafic and related mafic rocks: their classification and genesis with special reference to the concentration of nickel sulfides and platinum-group elements. Econ Geol 71: 1131–1158

    Google Scholar 

  • Naldrett AJ, Innes DG, Sowa J, Gorton MP (1982) Compositional variations within and between five Sudbury ore deposits. Econ Geol 77: 1519–1534

    Google Scholar 

  • Page NJ (1972) Pentlandite and pyrrhotite from the Stillwater complex, Montana: ironnickel ratios as a function of associated minerals. Econ Geol 67: 814–820

    Google Scholar 

  • Petruk W, Harris DC, Stewart JM (1969) Langisite, a new mineral, and the rare minerals cobalt pentlandite, siegenite, parkerite and bravoite from the Langis Mine, CobaltGowganda area, Ontario. Canad Mineral 9: 597–616

    Google Scholar 

  • Rajamani V, Prewitt CT (1973) Crystal chemistry of natural pentlandites. Canad Mineral 12: 178–187

    Google Scholar 

  • Razin LV (1976) Geologic and genetic features of forsterite dunites and their platinum-group mineralization. Econ Geol 71: 1371–1376

    Google Scholar 

  • Rudashevskii NS, Menachikov JuN, Motchalov AG, Trubkin NV, Shumskaya NI, Zhdanov VV (1985) Cuprorhodsite CuRh2 S4 and cuproiridsite CuIr2 S4, new natural thiospinels of platinum-group elements. Zap Vses Min Obsch 114: 187–195 (in Russian)

    Google Scholar 

  • Scheibner E, Agostini A (in preparation) Early Devonian rifting and basin formation in the Cobar region, Central New South Wales

  • Scott SD (1974) The Fe-Zn-S system. In: Ribbe PH (ed) Sulfide mineralogy. Miner Soc Amer Short course notes 1: CS 41–57

  • Slansky E, Johan Z, Ohnenstetter M, Barron LM (in preparation) Platinum mineralization in the Alaskan-type intrusive complexes near Fifield, N.S.W., Australia. Part 2. Platinumgroup minerals in placer deposits at Fifield

  • Snetsinger KG (1971) Erlichmanite (OsS2), a new mineral. Amer Mineral 56: 1501–1506

    Google Scholar 

  • Stumpfl EF, Clark AM (1964) A natural occurrence of Co9S8, identified by X-ray microanalysis. N Jb Min Mh 1964: 240–245

    Google Scholar 

  • Suppel DW, Barron LM (1986a) Platinum in basic to ultrabasic intrusive complexes at Fifield: a preliminary report. N.S.W. Geol Surv Quarterly Notes 65: 1–8

    Google Scholar 

  • Suppel DW, Barron LM (1986b) New data on the occurrence of platinum at Fifield; In: Geological setting of precious metals in New South Wales, Geol Soc Abstr Abstr 18: 1–5

    Google Scholar 

  • Talkington RW, Lipin BR (1986) Platinum-group minerals in chromite seams of the Stillwater complex, Montana. Econ Geol 81: 1179–1186

    Google Scholar 

  • Todd SG, Keith DW Le Roy LW Schissel DJ, Mann EL, Irvine TN (1982) The J-M platinum-palladium reef of the Stillwater complex, Montana: 1. Stratigraphy and petrology. Econ Geol 77: 1454–1480

    Google Scholar 

  • Vaasjoki O, Hdkli TA, Tontti M (1974) The effect of cobalt on the thermal stability of pentlandite. Econ Geol 69: 549–551

    Google Scholar 

  • Vermaak CF, Hendriks LP (1976) A review of the mineralogy of the Merensky reef, with specific reference to new data on the precious metal mineralogy. Econ Geol 71: 1244–1269

    Google Scholar 

  • Zhdanov VV, Rudashevskii NS (1980) A new type of gold-platinum mineralization in metasomatites after basic rocks. Dokl Akad Nauk SSSR 252: 1452–1456 (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 4 Figures and 2 Plates

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johan, Z., Ohnenstetter, M., Slansky, E. et al. Platinum mineralization in the Alaskan-type intrusive complexes near Fifield, New South Wales, Australia part 1. platinum-group minerals in clinopyroxenites of the Kelvin Grove prospect, owendale intrusion. Mineralogy and Petrology 40, 289–309 (1989). https://doi.org/10.1007/BF01164604

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01164604

Keywords

Navigation