Skip to main content
Log in

Origin of tourmaline and oxide minerals from the metamorphosed Rampura Agucha Zn-Pb-(Ag) deposit, Rajasthan, India

Dravit-reicher Turmalin und Oxide der metamorphen Zn-Pb-(Ag) Lagerstätte Rampura Agucha, Rajasthan, Indien

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

The sediment-hosted exhalative Rampura Agucha Zn-Pb-(Ag) deposit in Rajasthan, India, contains a number of oxide minerals which have been formed as a result of high-grade metamorphism. Gahnite (Zn0.66–0.75Fe0.13–0.24Mg0.06–0.13Al1.98–2.01O4) is a common minor phase in the ores and formed from breakdown of sphalerite and Al-rich silicates. Pyrophanite-ilmenite solid solution (Fe0.42–0.68Mn0.32–0.58Ti0.99–1.01O3) is very rare and occurs, intergrown with rutile, as a result of unmixing of a Ti-Fe-Mn bearing precursor mineral.

Dravite-rich tourmaline with Fe/(Fe+Mg) ratios around 0.02 occurs at the hanging wall contact of the orebody with the paragneisses and is intergrown with the ore minerals. Tourmaline from the stratabound ores is distinguished from schorl-rich tourmaline of two pegmatite samples which show Fe/(Fe+Mg) ratios of 0.43 and 0.62, respectively. It is argued that dravite-rich tourmaline (or another B-rich precursor mineral) is of premetamorphic origin. This dravite-rich tourmaline recrystallized during high-grade metamorphism when the metamorphic fluid, represented by H2O-CO2±CH4-N2 inclusions, was trapped.

Amphiboles, muscovites and biotites from metamorphic rocks of the deposit display radiometric39Ar/40Ar cooling ages between 788 and 909 Ma.

Zusammenfassung

Die sedimentär-exhalative Zn-Pb-(Ag) Lagerstätte Rampura Agucha in Rajasthan, Indien, beinhaltet eine Reihe von Oxidmineralen, die infolge der hochgradigen Regional-metamorphose gebildet wurden. Gahnit (Zn0.66–0.75Fe0.13–0.24 Mg0.06–0.13Al1.98–2.01O4) ist eine häufig anzutreffende Phase, die sich aus Sphalerit und Al-reichen Silikatphasen gebildet hat. Pyrophanit-Ilmenit (Fe0.42–0.68Mn0.32–0.58 T0.99–1.01O3) ist sehr selten und bildet, aufgrund der Entmischung eines Ti-Fe-Mn hältigen Vorläuferminerals, Verwachsungen mit Rutil.

Dravit-reicher Turmalin mit einem Fe/(Fe+Mg) Verhältnis um 0.02 bildete sich gleichzeitig mit den Sulfidmineralen am Kontakt des Erzkörpers mit den hangenden Paragneisen der Lagerstätte. Dieser Turmalin unterscheidet sich klar von Schörlreichem Turmalin mit Fe/(Fe+Mg) Verhältnissen von 0.43 und 0.62 von zwei Pegmatiten. Die Herkunft dieses prämetamorphen Dravit-reichen Turmalins (oder dessen Vorgängerminerals) ist unklar. Dieser Turmalin rekristallisierte während der Metamorphose, wobei er das metamorphe H2O-CO2±CH4-N2-Fluid in Form von primären Einschlüssen einschloß.

Amphibol, Muskowit und Biotit wurden mittels39Ar/40Ar-Methode datiert und liefern radiometrische Abkühlungsalter zwischen 788 und 909 Ma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkin BP (1978) Hercynite as a breakdown product of staurolite from within the aureole of the Ardara pluton, County Donegal, Eire. Mineral Mag 42: 237–239

    Google Scholar 

  • Bakker RJ, Jansen BH (1990) Preferential water leakage from fluid inclusions by means of mobile dislocations. Nature 345: 58–60

    Google Scholar 

  • Bence AE, Albee AL (1968) Empirical correction factors for the electron microprobe analysis of silicates and oxides. J Geol 76: 382–403

    Google Scholar 

  • Berger GW, York D (1981) Geothermometry from39Ar/40Ar dating experiments. Geochim Cosmochim Acta 45: 795–811

    Google Scholar 

  • Benvenutti M, Lattanzi P, Tanelli G (1989) Tourmaline-associated Pb-Zn-Ag mineralization at Bottino, Apuane Alps, Italy: geologic setting, mineral textures, and sulphide chemistry. Econ Geol 84: 1277–1292

    Google Scholar 

  • Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system SiO2 - K2O - Na2O - Fe2O3 - TiO2 - Al2O3 - FeO -MgO - K2O - H2O - CO2. J Petrol 29: 445–522

    Google Scholar 

  • Brousse R, Maury RC (1976) Paragenesé mangenésifiére d'une rhyolite hyperalcaline du Mont Dorc. Bull Soc fr Minéral Cristallogr 99: 300–303

    Google Scholar 

  • Cassidy KF, Groves DI, Binns RA (1988) Manganoan ilmenite formed during regional metamorphism of Archean mafic and ultramafic rocks from Western Australia. Can Mineral 26: 999–1012

    Google Scholar 

  • Craig JR, Sandhaus DJ, Guy RE (1985) Pyrophanite MnTiO3 from Sterling Hill, New Jersey. Can Mineral 23: 491–494

    Google Scholar 

  • Crawford ML (1981) Phase equilibria in aqueous fluid inclusions. In:Hollister LS, Crawford ML (eds) Short course in fluid inclusions: applications to petrology, vol 6. Min Assoc Canada Short Course Handbook, pp 75–100

  • Deb M (1992) Lithogeochemistry of rocks around Rampura Agucha massive zinc sulphide ore-body, NW India — implications for the evolution of a Proterozoic ‘Aulakogen’. In:Sarkar SC (ed) Metallogeny related to tectonics of the Proterozoic mobile belts. Balkema, Rotterdam, pp 1–35

    Google Scholar 

  • ——,Sakar SC (1990) Proterozoic tectonic evolution and metallogenesis in the Aravalli-Delhi Orogenic Complex, northwestern India. Precamb Res 46: 115–137

    Google Scholar 

  • ——Thorpe RI, Cumming GL Wagner PA (1989) Age, Source and stratigraphic implications of Pb isotope data for conformable, sediment-hosted, base metal deposits in the Proterozoic Aravalli-Delhi Orogenic belt, Northwestern India. Precamb Res 43: 1–22

    Google Scholar 

  • Dietforst EJL (1980) Biotite breakdown and the formation of gahnite in metapelitic rocks from Kemio, southwest Finland. Contrib Mineral Petrol 75: 327–337

    Google Scholar 

  • Ethier VG, Campbell FA (1977) Tourmaline concentrations in Proterozoic sediments of the southern Cordillera of Canada and their economic significance. Can J Earth Sci 14: 2348–2363

    Google Scholar 

  • Ferguson AK (1978) The occurrence of ramsayite, Titan-Laventite and a Fluorine-rich eucolite in a nepheline-syenite inclusion from Tenerife, Canary Islands. Contrib Mineral Petrol 66: 15–20

    Google Scholar 

  • Gandhi SM, Paliwal HV, Bhatnagar SN (1984) Geology and ore reserve estimates of Rampura Agucha lead zinc deposit, Bhilwara District. J Geol Soc India 25: 689–705

    Google Scholar 

  • Haggerty SE (1983) The mineral chemistry of new titanites from the Jagersfontein kimberlite, South Africa: implications for metasomatism in the upper mantle. Geochim Cosmochim Acta 47: 1833–1854

    Google Scholar 

  • Henry DL, Guidotti CV (1985) Tourmaline as a petrogenetic indicator mineral: an example from the staurolite grade metapelites of NW-Maine. Am Mineral 70: 1–15

    Google Scholar 

  • Holloway JR (1977) Fugacity and activity of molecular species in supercritical fluids. In:Fraser DG (ed) Thermodynamics in geology. pp 161–181

  • — (1981) Composition and volumes of supercritical fluids in the earth's crust. In:Hollister LS, Crawford ML (eds) Short course in fluid inclusions: applications to petrology, vol 6. Min Assoc Canada Short Course Handbook, pp 132–38

  • Höller W (1996) The Rampura Agucha Zn-Pb-(Ag) deposit, Rajasthan, northwestern India. Thesis, University of Leoben, pp 127–130

  • ——Gandhi SM (1995) Ag-minerals from the metamorphosed Rampura Agucha Pb-Zn-(Ag) deposit, Rajasthan, India. Can Mineral 33: 1047–1057

    Google Scholar 

  • ——Stumpfl EF (1995) Cr-V oxides from the Rampura Agucha Pb-Zn-(Ag) deposit, Rajasthan, India. Can Mineral 33: 745–752

    Google Scholar 

  • ——Touret JLR, Stumpfl EF (1996) Retrograde fluid evolution at the Rampura Agucha Pb-Zn(Ag) deposit, Rajasthan, India. Mineral Deposita 31: 163–171

    Google Scholar 

  • Hindustan Zinc Limited Staff (1992) Rampura-Agucha mine. Min Mag 167: 372–375

    Google Scholar 

  • Kerkhof AM Van den (1988) The system CO2-CH4-N2 in fluid inclusions: theoretical modelling and geological applications. Thesis, Vrije Universiteit Amsterdam, 206 pp

  • —— (1990) Isochoric phase diagrams in the systems CO2-CH4 and CO2-N2: applications to fluid inclusions. Geochim Cosmochim Acta 54: 895–901

    Google Scholar 

  • Lee DE (1955) Occurrence of pyrophanite in Japan. Am Mineral 40: 32–40

    Google Scholar 

  • Liipo JP, Vuollo JI, Nykänen VM, Piirainen TA (1994) Pyrophanite and ilmenite in serpentinized wehrfite from Ensilä, Kuhmo greenstone belt, Finland. Eur J Mineral 6: 145–150

    Google Scholar 

  • Lindh A, Malmström L (1984) The occurrence and formation of pyrophanite in lateformed magnetite porphyroblasts. N Jb Mineral Abh 149: 13–21

    Google Scholar 

  • Melcher F (1995) Genesis of chemical sediments in Birimian greenstone belts: evidence from gondites and related Mn-bearing rocks from nothern Ghana. Mineral Mag 59: 229–251

    Google Scholar 

  • Palmer MR, Slack JF (1989) Boron isotopic composition of tourmaline from massive sulphide deposits and tourmalinites. Contrib Mineral Petrol 103: 434–451

    Google Scholar 

  • Plimer IR (1983) The association of tourmaline-bearing rocks with mineralization at Broken Hill, N. S. W. Proc Ann Aus Inst Min Met Conf, Broken Hill, pp 157–176

  • Ranawat PS, Bhatnagar SN, Sharma NK (1988) Metamorphic character of Rampura Agucha Pb-Zn deposit, Rajasthan. Memoir. Geol Soc India 7: 397–409

    Google Scholar 

  • Roedder E (1984) Fluid inclusions: reviews in mineralogy, vol 12. Mineral Soc Am, pp 182–202

    Google Scholar 

  • Sivaprakash C (1980) Mineralogy of manganese deposits of Konduru and Garbham, Andra Pradesh, India. Econ Geol 75: 1083–1104

    Google Scholar 

  • Slack JF (1982) Tourmaline in Appalachian-Caledonian massive sulphide deposits and its exploration significance. Trans Inst Mining Metall 91(B): B81–89

    Google Scholar 

  • ——,Coad PR (1988) Multiple hydrothermal and metamorphic events in the Kidd Creek volcanogenic massive sulphide deposit, Timmins, Ontario: evidence from tourmalines and chlorites. Can J Earth Sci 26: 694–715

    Google Scholar 

  • ——,Palmer MR, Stevens BP, Barnes RG (1993) Origin and significance of tourmaline-rich rocks in the Broken Hill District, Australia. Econ Geol 88: 505–541

    Google Scholar 

  • Spry PG, Scott SD (1986) The stability of zincian spinels in sulphide systems and their potential as exploration guides for metamorphosed massive sulphide deposits. Econ Geol 81: 1446–1463

    Google Scholar 

  • Stoddard EF (1979) Zinc-rich hercynite in high grade metamorphic rocks: a product of the dehydration of staurolite. Am Mineral 64: 736–741

    Google Scholar 

  • Tatarintsev VL, Tsymbal SN, Garanin VG, Kudryadseva, GP Marshintsev VK (1983) Qenched particles from kimberlites in Yakutsia. Dokl Earth Sci Sect 270: 144–148

    Google Scholar 

  • Taylor BE, Slack JF (1984) Tourmalines from Appalachian-Caledonian massive sulphide deposits: textural, chemical, and isotopic relationships. Econ Geol 79: 1703–1726

    Google Scholar 

  • Tollo RP, Haggerty SE (1987) Nb-Cr-Rutile in the Orapa Kimberlite, Botswana. Can Mineral 25: 251–264

    Google Scholar 

  • Touret JLR (1981) Fluid inclusions in high grade metamorphic rocks. In:Hollister LS Crawford ML (eds) Short course in fluid inclusions: applications to petrology, vol 6. Min Assoc Canada Short Course Handbook, pp 182–202

  • —— (1988) Nature and interpretation of fluid inclusions in granulites. In: Ashwal LD (ed) Workshop on the deep continental crust of South India. LPI Techn Rep 88-6. Lunar and Planetary Institute, Houston, pp 181–184

    Google Scholar 

  • Von Damm KL, Edmond JM, Measures CI, Grant B (1985) Chemistry of submarine hydrothermal solutions at Guaymas Basin, Gulf of California. Geochim Cosmochim Acta 49: 2221–2237

    Google Scholar 

  • Winter GA, Essene EJ, Peacor DR (1981) Carbonates and pyroxenites from the manganese deposit near Bold Knob, North Carolina. Am Mineral 66: 278–289

    Google Scholar 

  • Woolley AR, Platt RG (1988) The peralkaline nepheline syenites of the Junguni intrusion, Chilwa province, Malawi. Mineral Mag 52: 425–433

    Google Scholar 

  • Zak L (1971) Pyrophanite from Chvaletice (Bohemia). Mineral Mag 38: 312–316

    Google Scholar 

  • Zhang Y, Frantz JD (1987) Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions. Chem Geol 64: 335–350

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 8 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höller, W., Gandhi, S.M. Origin of tourmaline and oxide minerals from the metamorphosed Rampura Agucha Zn-Pb-(Ag) deposit, Rajasthan, India. Mineralogy and Petrology 60, 99–119 (1997). https://doi.org/10.1007/BF01163137

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01163137

Keywords

Navigation