Skip to main content
Log in

The mesothermal gold-lamprophyre association: significance for an accretionary geodynamic setting, supercontinent cycles, and metallogenic processes

Die mesothermale Gold-Lamprophyrassoziation und ihre Bedeutung für Akkretionsgeotektonik, Superkontinent-Zyklen und metallogenetische Prozesse

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Archean shoshonitic lamprophyres are cotemporal and cospatial with gold mineralization in the Superior Province of Canada, both being emplaced along translithospheric structures that demark subprovince boundaries. By analogy with geochemically similar Phanerozoic counterparts, the dikes are a product of specific plate interactions rather than a deep asthenosphere plume-initiated event, and their onset in the late-Archean at ∼ 2.7 Ga signifies that Phanerozoic style plate-tectonics was operating at this time. Fresh shonshonitic dikes are characterized by normal background gold contents of 3.9 ± 8.1 ppb (lσ), close to the value of 3.0 ppb for the bulk continental crust, and average abundances of As, Sb, Bi, W, TI, B, Cu, Pb, Zn, and Mo are also close to their values in bulk continental crust. Thus, fresh lamprophyres are not intrinsically enriched either in Au or elements affiliated with gold in mesothermal deposits, and accordingly do not constitute a special source rock. Platinum group element contents (Ir = 0.4 ± 0.58 ppb; Pt = 5.9 ± 26.5, Pd = 5.5 ± 1.8), in conjunction with Cu, Au, and Ni abundances, define approximately flat patterns on primitive mantle-normalized diagrams, consistent with derivation of the alkaline magmas from a depleted mantle source variably enriched by incompatible elements. Comparable abundances and ratios of Pd/Au, Os/Ir, and Ru/Ir in Archean lamprophyres, Archean komatiites, and Gorgona komatiites signify that the Archean and Phanerozoic upper mantle had similar noble metal contents, such that the prolific greenstone belt Au-Ag vein deposits cannot be explained by secular variations in upper mantle Au abundance alone. The lack of covariation between Au and light rare earth elements in lamprophyres rules out mantle metasomatism as a process generating intrinsically Au-rich magmas.

Emplacement of the lamprophyres was diachronous from north (2710 Ma) to south (2670 Ma) in the Superior Province, as was the gold mineralization. Both were related to late transpressional tectonics during successive accretions of individual subprovinces. Alkaline magmatism and gold mineralization are temporally and spatially related because they share a common geodynamic setting, but they are otherwise the products of distinct processes. Much of Archean time was devoid of shoshonites and mesothermal gold deposits. The first widespread inception of this duality at 2.71–2.65 Ga in the Superior and Slave Provinces, Canada, and in India and Australia, may reflect one of the first supercontinent aggregations involving accretionary, “Cordilleran style” tectonics. Giant mesothermal gold provinces and shoshonites recur through time in the Palaeozoic and Mesozoic in this geodynamic setting.

Zusammenfassung

Archaische schoschonitische Lamprophyre sind zeitlich und räumich mit Goldmineralisationen in der Superior Provinz Kanadas vergesellschaftet; beide sind an translithosphärische Strukturen, die die Grenzen von Subprovinzen markieren, geknüpft. Ein Vergleich mit geochemisch ähnlichen phanerozoischen Abfolgen weist darauf hin, daß die Gänge eher durch spezifische Platteninteraktions- und nicht durch Hot Spot initiierte asthenosphärische Prozesse entstanden sind. Ihre spät-archaische Alterseinstufung (ca. 2.7 Ga) belegt somit, daß bereits zu dieser Zeit plattentektonische Prozesse, wie sie für das Phanerozoikum typisch sind, funktionierten.

Frische schoschonitische Gänge zeigen mit Durchschnittskruste vergleichbare Untergrundgehalte an Gold von 3.9 ± 8.1 ppb (lσ), Auch die Gehalte an As, Sb, Bi, W, Tl, B, Cu, Pb, Zn und Mo entsprechen Gehalten der durchschnittlichen Erdkruste. Frische Lamprophyre sind daher nicht an Gold bzw. an anderen für mesothermale AuLagerstätten typischen Elementen angereichert und stellen somit keine spezifischen Muttergesteine dar. Die Gehalte an Platingruppen-Elementen (Ir = 0.4 ± 0.58 ppb; Pt = 5.9 ± 26.5; Pd 5.5 ± 1.8) in Verbindung mit der Verteilung von Cu, Au und Ni definieren einen flachen Trend in auf primitiven Mantel normierten Diagrammen, was mit einer Herkunft der alkalischem Magmen aus einer abgereicherten Mantelquelle, die im unterschiedlichen Ausmaß an einzelnen inkompatiblen Elementen angereichert ist, hinweist. Ähnliche Elementverteilungen bzw. verhältnisse von Pd/Au, Os/Ir und Ru/Ir in archaischen Lamprophyren, archaischen Komatiiten und Gorgona-Komatiiten belegen, daß der archaische und phanerozoische obere Mantel ähnliche Gehalte an Edelund Buntmetallen aufweisen. Die Au-Ag Ganglagerstätten in Greenstone Belts können daher nicht ausschließlich mit einer Variation der Au-Gehalte des oberen Erdmantels erklärt werden. Die fehlende Korrelation zwischen Au und den leichten Seltenen Erden in den Lamprophyren schließt mantelmetasomatische Prozesse für die Bildung von Au-reichen Magmen aus.

Die Platznahme der Lamprophyre in der Superior Provinz erfolgte zeitgleich von N (2710 Ma) nach S (2670 Ma) mit der Bildung der Goldmineralisationen. Beide stehen mit einer späten transpressionalen Tektonik während der sukzessiven Akkretion einzelner Subprovinzen in Beziehung. Alkalimagmatismus und Goldmineralisationen sind deshalb räumlich und zeitlich vergesellschaftet, weil sie innerhalb desselben geodynamischen Settings gebildet wurden. Sie sind sonst aber Produkte unterschiedlicher Prozesse. Über weite Zeiträume des Archaikums fehlen Schoschonite und mesothermale Goldlagerstätten. Das erste großangelgte Auftreten beider in der Superior und Slave Provinz Kanadas während 2.71-2.65 Ga und in Indien und Australien könnte eine der ersten Superkontinentaggregationen im Stile einer “Cordillera-style” Akkretionstektonik widerspiegeln. Riesige mesothermale Goldprovinzen und Schoschonite treten während des Paläo- und Mesozoikums immer wieder, gebunden an diese geotektonische Position, in Erscheinung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arculus RJ (1987) The significance of source versus process in the tectonic controls of magma genesis. J Volcanol Geotherm Res 32: 1–12

    Google Scholar 

  • Barley ME, Groves DI (1992) Supercontinental cycles and the distribution of metal deposits through time. Geology 20: 291–294

    Google Scholar 

  • Barnicoat AC, Fare RJ, Groves DI, McNaughton NJ (1991) Synmetamorphic lode-gold deposits in high-grade Archean settings. Geology 19: 921–924

    Google Scholar 

  • Barrie CT, Shirey SB (1991) Nd- and Sr-isotope systematics for the Kamiskotia-Montcalm area: implications for the formation of late Archean crust in the western Abitibi Subprovince, Canada. Can J Earth Sci 28: 58–76

    Google Scholar 

  • Basu AR, Goodwin AM, Tatsumoto M (1984) Sm-Nd study of Archean alkalic rocks from Superior province of Canadian Shield. Earth Planet Sci Lett 70: 40–46

    Google Scholar 

  • Bell K, Anglin CD, Franklin JM (1989) Sm-Nd and Rb-Sr systematics of scheelites: possible implications for the genesis of vein hosted gold deposits. Geology 17: 500–504

    Google Scholar 

  • Ben Othman D, Arndt NT, White WN, Jochum KP (1990) Geochemistry and age of Timiskaming alkalic volcanics and the Otto syenite stock, Abitibi, Ontario. Can J Earth Sci 27: 1304–1311

    Google Scholar 

  • Boyle RW (1979) The geochemistry of gold and its deposits. Geol Surv Can Bull 280: 584

    Google Scholar 

  • Brugmon GE, Arndt NT, Hofmann AW, Tobschall HJ (1987) Noble metal abundances in komatiites suites from Alexo, Ontario, Gorgona Island, Colombia. Geochim Cosmochim Acta 51: 2159–2169

    Google Scholar 

  • Burrows DR, Spooner ETC (1987) Generation of a magmatic H2O-CO2 fluid enriched in Au, Mo, and W within an Archean sodic granodiorite stock, Mink Lake, northwestern Ontario. Econ Geol 82: 1931–1957

    Google Scholar 

  • Cameron EM (1988) Archean gold: relation to granulite formation and redox zoning in the crust. Geology 16: 109–112

    Google Scholar 

  • Card KD (1990) A review of the Superior Province of the Canadian Shield, a product of Archean accretion. Precamb Res 48: 23–96

    Google Scholar 

  • Ciesielski A (1986) Subdivisions of the Superior Province of the Canadian Shield (DNAG v. 1). Geosci Can 13: 5–13

    Google Scholar 

  • Poulsen KH, Robert F (1989) The Archean Superior Province and its lode gold deposits. Econ Geol Monogr 6: 19–36

    Google Scholar 

  • Carter MW (1985) Forbes and Conmee townships, district of Thunder Bay. Ont Geol Surv Misc Pap 126: 60–66

    Google Scholar 

  • Claoué-Long JC, King RW, Kerrich R (1990) Archaean hydrothermal zircon in the Abitibi greenstone belt: constraints on the timing of gold mineralisation. Earth Planet Sci Lett 98: 109–128

    Google Scholar 

  • Colvine AC (1989) An empirical model for the formation of Archean gold deposits: products of final cratonization of the Superior Province, Canada. Econ Geol Monogr 6: 37–53

    Google Scholar 

  • Cooke DL, Moorehouse WW (1969) Timiskaming volcanism of the Kirkland Lake are, Ontario Canada. Can J Earth Sci 6: 117–132

    Google Scholar 

  • Cooper AF, Barreiro BA, Kimbrough DL, Mattinson JM (1987) Lamprophyre dike intrusion and the age of the Alpine Fault, New Zealand. Geology 15: 941–944

    Google Scholar 

  • Corfu F, Stott GM (1986) U-Pb ages for the late magmatism and regional deformation in the Shebandowan Belt, Superior Province, Canada. Can J Earth Sci 23: 1075–1082

    Google Scholar 

  • Krogh TE, Kwok YY, Jensen LS (1989) U-Pb zircon geochronology in the southwestern Abitibi greenstone belt, Superior Province. Can J Earth Sci 26: 1747–1763

    Google Scholar 

  • Jackson SL, Sutcliffe RH (1991) U-Pb ages and tectonic significance of late Archean alkalic magmatism and nonmarine sedimentation: Timiskaming group, southern Abitibi belt, Ontario. Can J Earth Sci 28: 489–503

    Google Scholar 

  • Dyer WS (1936) Geology of the Martin-Bird property in Hearst Township. Ont Dept Mines 44th Ann Report 44, Pt. 2, 56–58

  • Ellam RM, Hawkesworth CJ (1988) Elemental and isotopic variations in subduction related basalts: evidence for a three component model. Contrib Mineral Petrol 98: 263–289

    Google Scholar 

  • England PC, Richardson SW (1977) The influence of erosion upon the mineral facies of rocks from different metamorphic environments. J Geol Soc London 134: 201–213

    Google Scholar 

  • Esperanra S, Holloway JR (1987) On the origin of some mica lamprophyres: experimental evidence from a mafic minette. Contrib Mineral Petrol 95: 207–216

    Google Scholar 

  • Feng R, Kerrich R, McBride S, Farrar E (1992) 40Ar/39Ar age constraints on the thermal history of the Archean Abitibi greenstone belt and the Pontiac Subprovince: implications for terrain collision, differential uplift, and overprinting of gold deposits. Can J Earth Sci 29:1389–1411

    Google Scholar 

  • — — Mass R (1993) Geochemical, O-, and Nd-isotope systematics of metasediments from the Abitibi greenstone belt and Pontiac Subprovince, Canada: evidence for ancient crust and Archean terrain juxtaposition. Geochim Cosmochim Acta (in press)

  • Foster RP (1989) Archean gold mineralization in Zimbabwe: implications for metallogenesis and exploration. Econ Geol Monogr 6: 54–70

    Google Scholar 

  • Gabrielse H (1978) Operation dease. Can Geol Surv Pap 78: 1–4

    Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer, Wien New York

    Google Scholar 

  • Groves DI, Barley ME, Ho S (1989) Nature, genesis, and tectonic setting of mesothermal gold mineralization in the Yilgarn Block, Western Australia. Econ Geol Monogr 6: 71–85

    Google Scholar 

  • — (1990) Structural setting and control of greenstone gold deposits. In:Robert F, Sheahan A, Green SB (eds) Greenstone gold and crustal evolution. NUNA Conference Volume, Geological Association of Canada, pp 79–85

  • Hamlyn PR, Keays RR, Cameron W, Crawford AJ, Waldron HM (1985) Precious metals in magnesian low-Ti lavas: implications for metallogenesis and sulfur saturation in primary magmas. Geochim Cosmochim Acta 46: 1797–1811

    Google Scholar 

  • Hanes JA, Archibald DA, Hodgson CJ, Robert F (1992) Dating of Archean auriferous quartz-vein deposits in the Abitibi greenstone belt, Canada:40Ar/39Ar evidence for a 70 to 100 m.y. time gap between plutonism-metamorphism and mineralization. Econ Geol 87: 1849–1861

    Google Scholar 

  • Hart SR, Reid MR (1991) Rb/Cs fractionation: a link between granulite metamorphism and the S-process. Geochim Cosmochim Acta 55: 2379–2383

    Google Scholar 

  • Hawkesworth CJ, Norry MJ, Roddick JC, Baker PE, Erancis PW, Thorpe RS (1979)143Nd/144Nd,87Sr/85Sr and incompatible element variations in calc-alkaline andesites and plateau lavas from South America. Earth Planet Sci Lett 42: 45–57

    Google Scholar 

  • Hodgson CJ, Troop DG (1988) A new computer-aided methodology for area selection in gold exploration; a case study from the Abitibi greenstone belt. Bull Soc Econ Geologists 83: 952–977

    Google Scholar 

  • — (1989) The late emplacement of gold in the Archean Abitibi greenstone belt: a consequence of thermal equilibration following collisional orogeny. Geol Assoc Canada-Mineralogical Assoc Canada (Abstracts with Program) 14: A45

    Google Scholar 

  • Jemielita RA, Davis DW, Krogh TE (1990) U-Pb evidence for Abitibi gold mineralization postdating greenstone magmatism and metamorphism. Nature 346: 831–834

    Google Scholar 

  • Jensen LS (1985) Synoptic mapping of the Kirkland Lake-Larder lake areas. Ont Geol Surv Misc Pap 126: 112–120

    Google Scholar 

  • Keays RR (1984) Archean gold deposits and their source rocks: the upper mantle connection. In:Foster RP (ed) Gold '82: The geology, geochemistry and genesis of gold deposits. Balkema, Rotterdam, pp 17–51

    Google Scholar 

  • Scott SD (1976) Precious metals in ocean-ridge basalts: implications for basalts and source rock for gold mineralization. Econ Geol 71: 705–719

    Google Scholar 

  • Ross JR, Woolrich P (1981) Precious metals in volcanic peridotite-associated nickel sulfide deposits in Western Australia: distribution within the ore and host rocks at Kambalda. Econ Geol 71:705–719

    Google Scholar 

  • Kerrich R (1990) Mesothermal gold deposits: a critique of genetic hypothesis. In:Robert F, Sheahan PA, Green SB (eds) Greenstone gold and crustal evolution. NUNA Conference Volume, pp 13–31

  • Kerrich R (1991) Radiogenic isotope systems applied to mineral deposits, In:Heaman L, Ludden JN (eds) Applications of radiogenic isotope systems to problems in geology. Mineral Assoc Canada Short Course 19: 365–421

  • Wyman D (1990) Geodynamic setting of mesothermal gold deposits: an association with accretionary tectonic regimes. Geology 18: 882–885

    Google Scholar 

  • Watson R (1984) The Macassa mine Archean lode gold deposit, Kirkland Lake, Ontario: geology, patterns of alteration, and hydrothermal regimes. Econ Geol 79: 1104–1130

    Google Scholar 

  • Kyser TK (1986) Stable isotope variations in the mantle. In:Valley J W. Taylor HP Jr, O'Neil Jr (eds) Stable isotopes in high temperature geological processes. Mineral Soc Am, Rev Mineral 16: 141–164

  • LeCheminant AN, Miller AR, Lecheminant GM (1987) Early Proterozoic alkaline igneous rocks, District of Keewatin, Canada: petrogenesis and mineralization. In:Beckinsale RD, Pharoah TD (eds) Geochemistry and mineralization of Proterozoic volcanic suites. Geol Soc Lond Spec Publ 33. Blackwell, Oxford, pp 219–240

    Google Scholar 

  • Lefleche MR, Dupuy C, Dostal J (1991) Archean orogenic ultrapotassic magmatism: an example from the southern Abitibi greenstone belt. Precam Res 52: 71–96

    Google Scholar 

  • Ludden J, Hubert C, Gariepy C (1986) The tectonic evolution of the Abitibi greenstone belt of Canada. Geol Mag 123: 153–166

    Google Scholar 

  • Luhr JF, Allan JF, Carmicheal ISE, Nelson SA, Hasenaka T (1989) Primitive calc-alkaline and alkaline rock types of the Western Mexico Volcanic Belt. J Geophys Res 94B: 4515–4530

    Google Scholar 

  • MacDonald R, Thorpe RS, Gaskarth JW, Grinrod AR (1985) Multi-component origin of Caledonian lamprophyres of northern England. Mineral Magazine 49: 485–494

    Google Scholar 

  • McCuaig TC, Kerrich R, Groves DI, Archer N (1993) The nature and dimensions of regional and local gold-related hydrothermal alteration in tholeiitic metabasalts in the Norseman Goldfields: the missing link in a crustal continuum of gold deposits. Mineralium Deposita (in press)

  • McCulloch MT, Gamble AJ (1991) Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett 102: 358–374

    Google Scholar 

  • McLennan JF (1915) Quartz veins in lamprophyre intrusions. Eng Mining J 99: 11–13

    Google Scholar 

  • McNeil AM, Kerrich R (1986) Archean lamprophyre dykes and gold mineralization, Metbeson, Ontario: the conjunction of LILE-enriched mafic magmas, deep crustal structures and Au concentration. Can J Earth Sci 23: 324–343

    Google Scholar 

  • Mitchell RH, Keays RR (1981) Abundance and distribution of gold, palladium and iridium in same spinel and garnet lherzolites: implications for the nature and origin of precious metal-rich intergranular components in the upper mantle. Geochim Cosmochim Acta 45:2425–2442

    Google Scholar 

  • Moore ES (1937) Geology of the Afton-Scholes area. Ontario Dept Mines 45th Ann Rept, Vol 45, pt 6, pp 38–48

    Google Scholar 

  • Morrison GW (1980) Characteristics and tectonic setting of the shoshonite rock association. Lithos 13: 97–108

    Google Scholar 

  • Morrison MA, Hendry GL, Leat PT (1987) Regional and tectonic implications of parallel Caledonian and Permo-Carboniferous lamprophyre dyke swams from Lismore, Ardour. Trans R Soc Edinburgh 77: 279–288

    Google Scholar 

  • Myers JD (1988) Possible petrogenetic relations between low- and high-MgO Aleutian basalts. Geol Soc Am Bull 100: 1040–1053

    Google Scholar 

  • Naldrett AJ, Barnes SJ (1986) The behaviour of platinum group elements during fractional crystallization and partial melting with special reference to the composition of magmaticsulflde ores. Fortschr Mineral 64: 113–133

    Google Scholar 

  • Pearce JA (1983) Role of the sub-continental lithosphere in magma genesis at active continental margins. In:Hawkesworth CJ, Norry MJ (eds) Continental flood basalts and mantle xenoliths. Shiva Press, Nantwich, pp 230–249

    Google Scholar 

  • Percival JA, Williams HR (1989) Late Archean Quetico accretionary complex, superior province, Canada. Geology 17: 23–25

    Google Scholar 

  • Perfit MR, Gast DA, Bence AE, Arculus RJ, Taylor SR (1980) Chemical characteristics of island arc basalts: implications for mantle sources. Chem Geol 30: 227–256

    Google Scholar 

  • Perring CS, Rock NMS, Golding SZ, Roberts DE (1989) Criteria for the recognition of metamorphosed or altered lamprophyres: a case study from the Archean of Kambalda, Western Australia. Precam Res 43: 215–237

    Google Scholar 

  • Ricou LE, Siddans AWB (1986) Collision tectonics in the Western Alps. In:Coward MP, Ries AC (eds) Collision tectonics. Geol Soc Lond Spec Publ 19: 229–244

  • Rock NMS (1984) The nature and origin of calc-alkaline lamprophyres: minettes, vogesties, kersantites. Trans R Soc Edinburgh 74: 193–227

    Google Scholar 

  • Rock NMS (1987) The nature and origin of lamprophyres; an overview. In:Fitton JG, Upton GJ (eds) Alkaline igneous rocks. Geol Soc London Spec Publ 30: 191–226

  • Groves DI, Perring CS, Golding SZ (1989) Gold, lamprophyres, and porphyries: what does their association mean? Econ Geol Monogr 6: 609–625

    Google Scholar 

  • — (1991) Lamprophyres. Blackie, Glasgow, 285 p

    Google Scholar 

  • Roden MF (1981) Origin of coexisting minette and ultramafic breccia, Navajo volcanic field. Contrib Mineral Petrol 77: 195–206

    Google Scholar 

  • Salters VJM, Hart SR (1991) The mantle sources of oceanic ridges, islands and arcs: the Hf-isotope connection. Earth Planet Sci Lett 104: 364–380

    Google Scholar 

  • Sandiford M, Powell R (1991) Some remarks on high-temperature-low-pressure metamorphism in convergent orogens. J Metam Geol 9: 333–340

    Google Scholar 

  • Shirey SB, Hanson GN (1986) Mantle heterogeneity and crustal recycling in Archean granitegreenstone belts: evidence from Nd isotopes and trace elements in the Rainy lake area, Superior Province, Ontario, Canada. Geochim Cosmochim Acta 50: 2631–2651

    Google Scholar 

  • Stern RA, Hanson GN, Shirey SB (1989) Petrogenesis of mantle-derived, LILE-enriched Archean monzodiorites and teachyandesites (sanukitoids) in southwestern Superior Province. Can J Earth Sci 26: 1688–1712

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, 312 p

    Google Scholar 

  • Thompson KRN, Fowler MB (1986) Subduction-related shoshontic and ultrapotassic magmatism: a study of Siluro-Odovician synenites from the Scottish Caledonides. Contrib Mineral Petrol 94: 507–522

    Google Scholar 

  • Thurston PC, Williams HR, Sutcliffe RH, Stott GM (1991) Geology of Ontario. Ont Geol Surv Spec Vol 4, Part 1, 711 p

  • Chivers KM (1990) Secular variation in greenstone sequence development emphasizing Superior Province, Canada. Precam Res 46: 21–58

    Google Scholar 

  • Cortis AL, Chivers KM (1987) A reconnaissance re-evaluation of a number of northwestern greenstone belts: evidence for an early Archean sialic crust. Ont Geol Surv Misc Pap 147: 4–24

    Google Scholar 

  • Venturelli G, Thorpe RS, Dal PG V, Del MA, Potts PJ (1984) Petrogenesis of calc-alkaline, shoshonitic and associated ultrapotassic Oligocene volcanic rocks from the northwestern Alps, Italy. Contrib Mineral Petrol 86: 209–220

    Google Scholar 

  • Wallace P, Carmichael ISE (1989) Minette lavas and associated leucitites from the western front of the Mexican volcanic belt: petrology, chemistry and origin. Contrib Mineral Petrol 103: 470–492

    Google Scholar 

  • Webb DR, Kerrich R (1988) An Archean ultramafic lamprophyre, Yellowknife: implications for tectonics and source regions. Contrib Geol Northwest Territories 3: 115–122

    Google Scholar 

  • Wong L, Davis DW, Krogh TE, Robert F (1991) U-Pb zircon and rutile chronology of Archean greenstone formation and gold mineralization in the Val d'Or region, Quebec. Earth Planet Sci Lett 104: 325–336

    Google Scholar 

  • Wyman DA, Kerrich R (1987a) Archean lamprophyres 1: distribution and tectonic setting. Geol Assoc Can-Mineral Assoc Can, Program with Abstracts 12: 102

    Google Scholar 

  • — — (1987b) Archean lamprophyres II. Geochemical and petrological evidence for Archean destructive plate margins. Geol Assoc Can-Mineral Assoc Can, Program with Abstracts 12: 102

    Google Scholar 

  • — — (1988) Alkaline magmatism, major structures, and gold deposit: implications for greenstone belt gold metallogeny. Econ Geol 83: 451–458

    Google Scholar 

  • — — (1989a) Archean Lamprophyre dikes of the Superior Province, Canada: distribution, petrology, and geochemical characteristics. J Geophys Res 94: 4667–4696

    Google Scholar 

  • — — (1989b) Archean shoshonitic lamprophyres associated with Superior Province gold deposits: distribution tectonic setting, noble metal abundance and significance for gold mineralization. Econ Geol Monogr 6: 651–667

    Google Scholar 

  • — —(1993) Archean shoshonitic lamprophyres of the Abitibi Subprovince, Canada: petrogenesis, age, and tectonic setting. J Petrol (in press)

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 7 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerrich, R., Wyman, D.A. The mesothermal gold-lamprophyre association: significance for an accretionary geodynamic setting, supercontinent cycles, and metallogenic processes. Mineralogy and Petrology 51, 147–172 (1994). https://doi.org/10.1007/BF01159725

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01159725

Keywords

Navigation