Skip to main content
Log in

Synaptic connections of enkephalin-immunoreactive nerve terminals in the neostriatum: a correlated light and electron microscopic study

  • Published:
Journal of Neurocytology

Summary

Two different antisera to leucine-enkephalin were used to study the localization of enkephalin-like immunoreactive material in the neostriatum and globus pallidus of the rat, by means of the unlabelled antibody-enzyme method. Thin immunoreactive varicose fibres are scattered throughout the neostriatum. In the ventral striatum, fibres come together and follow a relatively straight course for several micrometers, forming tube-like structures which can be traced to cell bodies; these cell bodies are completely surrounded by immunoreactive fibres. Occasional immunoreactive varicose fibres are also found close to another type of neuron throughout the whole neostriatum.

Examination by electron microscopy of immunoreactive structures that had been identified first in the light microscope, showed that each of the nearly 200 varicosities examined was a vesicle-containing bouton that formed a synaptic contact. Rarely were asymmetrical synaptic contacts found between immunoreactive boutons and dendritic spines. All other synapses formed by enkephalin-immunoreactive boutons were symmetrical. Two types of postsynaptic neuron were identified; the first type was a medium-sized neuron with the ultrastructural features of a typical striatal spiny neuron. The second type had a larger perikaryon surrounded by numerous immunoreactive varicosities that were found to be boutons forming symmetrical synapses. The long dendrites of this second type of neuron likewise received a dense input of immunoreactive boutons forming symmetrical synapses; such ensheathed dendrites were found to be the tube-like structures seen in the light microscope. The ultrastructural features of these neurons, notably a highly indented nucleus, were those of a rare type of striatonigral neuron. In the globus pallidus, all the enkaphalin-immunoreactive boutons studied formed symmetrical synapses with ensheathed dendrites and perikarya that were similar to the latter type of postsynaptic neuron in the neostriatum. Axo-axonic synapses involving immunoreactive boutons were not seen in our material.

The results are consistent with the view that enkephalin-like substances may be synaptic transmitters in the neostriatum and that they may have different actions according to the nature of the postsynaptic target. The finding that one type of neostriatal neuron, and a very similar neuron in the globus pallidus, receives multiple enkephalin-immunoreactive boutons all over its perikaryon and along its dendrites indicates a potentially important role of enkephalin in the convergence of information within the neostriatum and pallidum on to output neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azmitia, E. F. (1978) The serotonin-producing neurons of the midbrain median and dorsal raphe nuclei. InChemical Pathways in the Brain, Handbook of Psychopharmacology Vol. 9 (edited byIversen, L. L., Iversen, S. D. &Snyders, S. H.), pp. 233–314. New York: Plenum Press.

    Google Scholar 

  • Bolam, J. P., Powell, J. F., Totterdell, S. &Smith, A. D. (1981a) The proportion of neurons in the rat neostriatum that project to the substantia nigra demonstrated using horseradish peroxidase conjugated with wheatgerm agglutinin.Brain Research 220, 339–43.

    Google Scholar 

  • Bolam, J. P., Somogyi, P., Totterdell, S. &Smith, A. D. (1981b) A second type of striatonigral neuron: a comparison between retrogradely labelled and Golgi-stained neurons at the light and electron microscopic levels.Neuroscience 6, 2141–57.

    Google Scholar 

  • Cesselin, F., Soubrie, P., Bourgoin, S., Artaud, F., Reisine, T. D., Michelot, R., Glowinski, J. &Hamon, M. (1981)In vivo release of met-enkephalin in the cat brain.Neuroscience 6, 301–13.

    Google Scholar 

  • Chang, H. T., Wilson, C. J. &Kitai, S. T. (1981) Single neostriatal efferent axons in the globus pallidus: a light and electron microscopic study.Science 213, 915–8.

    Google Scholar 

  • Chesselet, M. F., Cheramy, A., Reisine, T. D. &Glowinski, J. (1981) Morphine and delta-opiate agonists locally stimulatein vivo dopamine release in cat caudate nucleus.Nature 291, 320–2.

    Google Scholar 

  • Chung, J. W., Hassler, R. &Wagner, A. (1977) Degeneration of two of nine types of synapses in the putamen after center median coagulation in the cat.Experimental Brain Research 28, 345–61.

    Google Scholar 

  • Correa, F. M. A., Innis, R. B., Hester, L. D. &Snyder, S. H. (1981) Diffuse enkephalin innervation from caudate to globus pallidus.Neuroscience Letters 25, 63–8.

    Google Scholar 

  • Cuello, A. C. (1978) Endogenous opioid peptides in neurons of the human brain.Lancet II, 291–3.

    Google Scholar 

  • Cuello, A. C. &Paxinos, G. (1978) Evidence for a long leu-enkephalin striopallidal pathway in rat brain.Nature 271, 178–180.

    Google Scholar 

  • Del Fiacco, M., Paxinos, G. &Cuello, A. C. (1982) Neostriatal enkephalin-immunoreactive neurons project to the globus pallidus.Brain Research 231, 1–17.

    Google Scholar 

  • Difiglia, M., Pasik, T. &Pasik, P. (1980) Ultrastructure of Golgi-impregnated and gold-toned spiny and aspiny neurons in the monkey neostriatum.Journal of Neurocytology 9, 471–92.

    Google Scholar 

  • Dimova, R., Vuillet, J. &Seite, R. (1980) Study of the rat neostriatum using a combined Golgi-electron microscope technique and serial sections.Neuroscience 5, 1581–96.

    Google Scholar 

  • Eidelberg, E. (1976) Possible actions of opiates upon synapses.Progress in Neurobiology 6, 81–102.

    Google Scholar 

  • Elde, R., Hökfelt, T., Johansson, O. &Terenius, L. (1976) Immunohistochemical studies using antibodies to leucine-enkephalin: initial observations on the nervous system of the rat.Neuroscience 1, 349–51.

    Google Scholar 

  • Emson, P. C., Arregui, A., Clement-Jones, V., Sanberg, B. E. B. &Rosser, M. (1980) Regional distribution of methionine-enkephalin and substance P-like immunoreactivity in normal human brain and in Huntington's disease.Brain Research 199, 147–60.

    Google Scholar 

  • Finley, J. C.W., Maderdrut, J. L. &Petrusz, P. (1981) The immunocytochemical localization of enkephalin in the central nervous system of the rat.Journal of Comparative Neurology 198, 541–65.

    Google Scholar 

  • Frotscher, M., Rinne, U., Hassler, R. &Wagner, A. (1981) Termination of cortical afferents on identified neurons in the caudate nucleus of the cat.Experimental Brain Research 41, 329–37.

    Google Scholar 

  • Glazer, E. J., Steinbusch, H., Verhofstad, A. &Basbaum, A. I. (1981) Serotonin neurons in nucleus raphe dorsalis and paragigantocellularis of the cat contain enkephalin.J. Physiology 77, 241–5.

    Google Scholar 

  • Gramsch, C., Hollt, V., Mehraein, P., Pasi, A. &Herz, A. (1979) Regional distribution of methionine-enkephalin- and beta-endorphin-like immunoreactivity in human brain.Brain Research 171, 261–70.

    Google Scholar 

  • Gray, E. G. (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study.Journal of Anatomy 93, 420–33.

    Google Scholar 

  • Graybiel, A. M., Ragsdale, C. W., Yoneoka, E. S. &Elde, R. P. (1981) An immunohistochemical study of enkephalins and other neuropeptides in the striatum of the cat with evidence that the opiate peptides are arranged to form mosaic patterns in register with the striosomal compartments visible by acetylcholinesterase staining.Neuroscience 6, 377–97.

    Google Scholar 

  • Haber, S. &Elde, R. (1982) The distribution of enkephalin immunoreactive fibres and terminals in the monkey central nervous system: an immunohistochemical study.Neuroscience 7, 1049–95.

    Google Scholar 

  • Hassler, R. (1979) Electronmicroscopic differentiation of the extrinsic and intrinsic types of nerve cells and their synapses in the striatum and their putative transmitters.Advances in Neurology 24, 93–108.

    Google Scholar 

  • Hassler, R., Chung, J. W., Rinne, U. &Wagner, A. (1978) Selective degeneration of two out of nine types of synapses in cat caudate nucleus after cortical lesions.Experimental Brain Research 31, 67–80.

    Google Scholar 

  • Hassler, R., Chung, J. W., Wagner, A. &Rinne, U. (1977) Experimental demonstration of intrinsic synapses in cat's caudate nucleus.Neuroscience Letters 5, 117–21.

    Google Scholar 

  • Hattori, T., McGeer, E. G. &McGeer, P. L. (1979) Fine structural analysis of the corticostriatal pathway.Journal of Comparative Neurology 185, 347–55.

    Google Scholar 

  • Henderson, G., Hughes, J. &Kosterlitz, H. W. (1978)In vitro release of leu- and met-enkephalin from the corpus striatum.Nature 271, 677–9.

    Google Scholar 

  • Hökfelt, T., Elde, R., Johansson, O., Terenius, L. &Stein, L. (1977) The distribution of enkephalin-immunoreactive cell bodies in the rat central nervous system.Neuroscience Letters 5, 23–31.

    Google Scholar 

  • Hong, J. S., Yang, H.-Y. T. &Costa, E. (1977) On the location of methionine enkephalin neurons in rat striatum.Neuropharmacology 16, 451–3.

    Google Scholar 

  • Hughes, J., Smith, T. W., Kosterlitz, H. W., Fothergill, L. A., Morgan, B. A. &Morris, H. R. (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity.Nature 258, 577–9.

    Google Scholar 

  • Iversen, L. L., Lee, C. M., Gilbert, R. F., Hunt, S. &Emson, P. C. (1980) Regulation of neuropeptide release.Proceedings of the Royal Society Series B 210, 91–111.

    Google Scholar 

  • Jacquet, Y. F. &Lajtha, A. (1973) Morphine action at central nervous system sites in rat: analgesia or hyperalgesia depending on site and dose.Science 182, 490–2.

    Google Scholar 

  • Jurna, I. (1981) Changes in the activity of nigral neurones induced by morphine and other opiates in rats with an intact brain and after prenigral decerebration.Naunyn-Schmiedeberg's Archives of Pharmacology 316, 149–54.

    Google Scholar 

  • Kelley, A. E., Domesick, V. B. &Nauta, W. J. H. (1982) The amygdalostriatal projection in the rat — an anatomical study by anterograde and retrograde tracing methods.Neuroscience 7, 615–30.

    Google Scholar 

  • Kemp, J. M. &Powell, T. P. S. (1971) The termination of fibres from the cerebral cortex and thalamus upon dendritic spines in the caudate nucleus: a study with the Golgi method.Philosophical Transactions of the Royal Society Series B 262, 429–39.

    Google Scholar 

  • Kuhar, M. J., Pert, C. B. &Snyder, S. H. (1973) Regional distribution of opiate receptor binding in monkey and human brain.Nature 245, 447–50.

    Google Scholar 

  • Kuschinsky, K. (1976) Actions of narcotics on brain dopamine metabolism and their relevance for ‘psychomotor’ effects.Arzneimittel-Forschung 26, 563–7.

    Google Scholar 

  • Leontovich, T. A. (1954) Fine structure of subcortical ganglia.Z. Nevropat. Psikh. 54, 168–78 (in Russian).

    Google Scholar 

  • McMillen, B. A. (1980) On the mechanism of morphine action on rat striatal dopamine metabolism.Biochemical Pharmacology 29, 1432–5.

    Google Scholar 

  • Miller, R. J., Chang, K.-J., Cooper, B. &Cuatrecasas, P. (1978) Radioimmunoassay and characterization of enkephalins in rat tissues.Journal of Biological Chemistry 253, 531–8.

    Google Scholar 

  • Nauta, H. J. W., Pritz, M. B. &Lasek, R. J. (1974) Afferents to the rat caudatoputamen studied with horseradish peroxidase. An evaluation of a retrograde neuroanatomical research method.Brain Research 67, 219–38.

    Google Scholar 

  • North, R. A. (1979) Opiates, opioid peptides and single neurons.Life Sciences 24, 1527–46.

    Google Scholar 

  • Oka, H. (1980) Organization of the cortico-caudate projections -a horseradish peroxidase study in the cat.Experimental Brain Research 40, 203–8.

    Google Scholar 

  • Park, M. R., Lighthall, J. W. &Kitai, S. T. (1980) Recurrent inhibition in the rat striatum.Brain Research 194, 359–69.

    Google Scholar 

  • Pasik, P., Pasik, T. &Di Figlia, M. (1979) The internal organization of the neostriatum in mammals. InThe Neostriatum (edited byDivac, I. &Öberg, R. G. E.), pp. 5–36. Oxford, New York: Pergamon Press.

    Google Scholar 

  • Pert, A. (1978) The effects of opiates on nigrostriatal dopaminergic activity. InCharacteristics and functions of opioids (edited byVan Ree, J. M. &Terenius, L.), pp. 389–401. Amsterdam: Elsevier/North Holland.

    Google Scholar 

  • Pickel, V. M., Sumal, K. K., Beckley, S. C., Miller, R. J. &Reis, D. J. (1980) Immunocytochemical localization of enkephalin in the neostriatum of rat brain: a light and electron microscopic study.Journal of Comparative Neurology 189, 721–40.

    Google Scholar 

  • Preston, R. J., Bishop, G. A. &Kitai, S. T. (1980) Medium spiny neuron projection from the rat striatum: an intracellular horseradish peroxidase study.Brain Research 183, 253–65.

    Google Scholar 

  • Sar, M., Stumpf, W. E., Miller, R. J., Chang, K.-J. &Cuatrecasas, P. (1978) Immunohistochemical localization of enkephalin in rat brain and spinal cord.Journal of Comparative Neurology 182, 17–38.

    Google Scholar 

  • Senba, E., Shiosaka, S., Hara, Y., Inagaki, S., Kawai, Y., Takatsuki, K., Sakanaka, M., Iida, H., Takagi, H., Minagawa, H. &Tohyama, M. (1982) Ontogeny of the leucine-enkephalin neuron system of the rat: immunohistochemical analysis. I. Lower brain stem.Journal of Comparative Neurology (in press).

  • Smith, A. D., Bolam, J. P. &Somogyi, P. (1981) An approach to the identification of neurotransmitters in characterized synapses of complex neuronal networks: application to the basal ganglia of the rat. InChemical Neurotransmission 75 years (edited byStjarne, L., Hedqvist, P., Lagercrantz, H. &Wennmalm, A.), pp. 463–79. London: Academic Press.

    Google Scholar 

  • Somogyi, P., Bolam, J. P. &Smith, A. D. (1981) Monosynaptic cortical input and local axon collaterals of identified striatonigral neurons. A light and electron microscopic study using the Golgi-peroxidase transport-degeneration procedure.Journal of Comparative Neurology 195, 567–84.

    Google Scholar 

  • Somogyi, P., Priestley, J. V., Cuello, A. C., Smith, A. D. &Bolam, J. P. (1982) Synaptic connections of substance P immunoreactive nerve terminals in the substantia nigra of the rat: a correlated light and electron microscopic study.Cell and Tissue Research 223, 469–86.

    Google Scholar 

  • Somogyi, P. &Smith, A. D. (1979) Projection of neostriatal spiny neurons to the substantia nigra. Application of a combined Golgi-staining and horseradish peroxidase procedure at both light and electron microscopic levels.Brain Research 178, 3–15.

    Google Scholar 

  • Somogyi, P. &Takagi, H. (1982) A note on the use of picric acid-paraformaldehyde- glutaraldehyde fixative for correlated light and electron microscopic immunocytochemistry.Neuroscience 7, 1779–84.

    Google Scholar 

  • Stern, A. S., Lewis, R. V., Kimura, S., Rossier, J., Gerber, L. D., Brink, L., Stein, S. &Udenfriend, S. (1979) Isolation of the opioid heptapeptide Met-enkephalin[Arg6, Phe7] from bovine adrenal medullary granules and striatum.Proceedings of the National Academy of Sciences USA 76, 6680–3.

    Google Scholar 

  • Sternberger, L. A., Hardy, P. H., Curculis, J. J. &Meyer, H. G. (1970) The unlabelled antibody-enzyme method of immunocytochemistry. Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase) and its use in identification of spirochetes.Journal of Histochemistry and Cytochemistry 18, 315–33.

    Google Scholar 

  • Tagerud, S. E. O. &Cuello, A. C. (1979) Dopamine release from the rat substantia nigrain vitro. Effect of raphe lesions and veratridine stimulation.Neuroscience 4, 2021–9.

    Google Scholar 

  • Veening, J. G., Cornelissen, F. M. &Lieven, P. A. J. M. (1980) The topical organization of the afferents to the caudatoputamen of the rat: a horseradish peroxidase study.Neuroscience 5, 1253–68.

    Google Scholar 

  • Wamsley, J. K., Young, W. S. &Kuhar, M. J. (1980) Immunohistochemical localization of enkephalin in rat forebrain.Brain Research 190, 153–74.

    Google Scholar 

  • Wilson, C. J. &Groves, P. M. (1980) Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: a study employing intracellular injection of horseradish peroxidase.Journal of Comparative Neurology 194, 599–615.

    Google Scholar 

  • Yang, H.-Y., Hong, J. S. &Costa, E. (1977) Regional distribution of leu and metenkephalin in rat brain.Neuropharmacology 16, 303–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somogyi, P., Priestley, J.V., Cuello, A.C. et al. Synaptic connections of enkephalin-immunoreactive nerve terminals in the neostriatum: a correlated light and electron microscopic study. J Neurocytol 11, 779–807 (1982). https://doi.org/10.1007/BF01153519

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01153519

Keywords

Navigation