Skip to main content
Log in

General method for determination of crack-interface bridging stresses

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A simple compliance approach is presented for the determination of crack-interface bridging stresses inquasi-brittle materials. This technique is based upon the consideration that an unloading compliance measured experimentally differs from the linear elastic compliance of the same crack length because of the influence of the bridging stresses. A general crack-interface bridging theory is developed from which the bridging stresses can be obtained utilizing the difference in these compliances. Experimental data from a range of engineering materials including alumina and duplex ceramics, cellulose fibre cements and carbon fibre/epoxy composites are used to verify the bridging theory and several interesting results are obtained. A novel toughness curve obtained with a new compliance φ function is presented and used to elucidate the crack-interface bridging associatedR curve behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Atkins andY. W. Mai, in “Elastic and plastic fracture in metals, polymer, ceramics, composites, biological materials” (Ellis Horwood, 1985) pp. 817.

  2. Y. W. Mai,Mater. Forum,11 (1988) 232.

    Google Scholar 

  3. Idem, in Proceedings of NATO ARW on Toughening Mechanisms in Quasi-Brittle Materials, edited by S. P. Shah (1990) p. 489.

  4. B. Cotterell andY. W. Mai,Mater. Forum,11 (1988) 341.

    Google Scholar 

  5. Y. W. Mai andM. I. Hakeem,J. Mater. Sci. 19 (1984) 501.

    Google Scholar 

  6. X. N. Huang andD. Hull,Comp. Sci. Technol. 35 (1989) 283.

    Google Scholar 

  7. S. Hashemi, A. J. Kinloch andJ. G. Williams,Ibid. 37 (1990) 429.

    Google Scholar 

  8. R. Knehans andR. W. Steinbrech,J. Mater. Sci. Lett. 1 (1982) 327.

    Google Scholar 

  9. M. V. Swain,ibid. 5 (1986) 1313.

    Google Scholar 

  10. Y. W. Mai andB. R. Lawn,J. Amer. Ceram. Soc. 70 (1987) 289.

    Google Scholar 

  11. A. Hillerborg, in “Fracture Mechanics of Concrete”, edited by F. H. Wittmann (Elsevier, Amsterdam, 1983) p. 223.

    Google Scholar 

  12. R. M. L. Foote, Y. W. Mai andB. Cotterell,J. Mech. Phys. Solids,34 (1986) 593.

    Google Scholar 

  13. X. Z. Hu andF. H. Wittmann, in “Fracture of Concrete and Rock: Recent Developments”, edited by S. P. Shah, S. E. Swartz and B. Barr (Elsevier, UK, 1989) p. 307.

    Google Scholar 

  14. V. S. Gopalaratnam andS. P. Shah,J. Amer. Concr. Inst. 82 (1985) 310.

    Google Scholar 

  15. P. E. Petersson, PhD Thesis, Lund Institute of Technology, Sweden (1981).

    Google Scholar 

  16. V. C. Li, in “Application of Fracture Mechanics to Cementitious Composites”, edited by S. P. Shah (Martinus Nijhoff, Dordrecht, 1985) p. 431.

    Google Scholar 

  17. T. J. Chuang andY. W. Mai,Int. J. Solids Structures,25 (1989) 1427.

    Google Scholar 

  18. Y. Uchida, K. Rokugo andW. Koyanagi, in Proceedings of Fracture Behaviour and Design of Materials and Structures, edited by D. Firras, Vol. 2 (Torino, 1990) p. 632.

  19. X. Z. Hu andF. H. Wittmann,J. Mater. Civil Engng. 2 (1990) 15.

    Google Scholar 

  20. X. Z. Hu, Postdoctoral Research Report, Swiss Federal Institute of Technology, Switzerland (1989).

    Google Scholar 

  21. X. Z. Hu andF. H. Wittmann, “An analytical method to determine the bridging stress transferred within the fracture process zone”, to be published in Cement and Concrete Research (1991).

  22. A. M. Alvaredo, X. Z. Hu andF. H. Wittmann, in “Fracture of Concrete and Rock”, edited by S. P. Shah, S. E. Swartz and B. Barr, (Elsevier, UK, 1989), p. 51.

    Google Scholar 

  23. X. Z. Hu andY. W. Mai, “Mode-I delamination and fibrebridging in carbon-fibre/epoxy composites with and without PVAL coating”Comp. Sci. & Techn, in press.

  24. X. Z. Hu, Y. W. Mai andS. Lathabai, “Compliance analysis of a bridged crack under monotonic and cyclic loading”,J. European Ceram. Soc. 1991, in press.

  25. H. E. Lutz, PhD Thesis, Hamburg-Harburg University, Germany (1989).

    Google Scholar 

  26. E. H. Lutz, N. Claussen andM. V. Swain,J. Amer. Ceram. Soc. 74 (1991) 11.

    Google Scholar 

  27. P. L. Swanson, C. J. Fairbanks, B. R. Lawn, Y. W. Mai andB. J. Hockey,J. Amer. Ceram. Soc. 70 (1987) 279.

    Google Scholar 

  28. S. Lathabai, J. Rodel andB. Lawn,J. Mater. Sci., in press.

  29. H. E. Lutz andN. Claussen,J. Euro. Ceram. Soc. 7 (1991) 209, 219.

    Google Scholar 

  30. X. Z. Hu, E. H. Lutz andM. V. Swain,J. Amer. Ceram. Soc. 74 (1991) 1828

    Google Scholar 

  31. R. W. Steinbrech, A. Reichl andW. Schaarwachter,J. Amer. Ceram. Soc. 73 (1990) 2009.

    Google Scholar 

  32. J. K. Kim andY. W. Mai,J. Mater. Sci. 26 (1991) 4702.

    Google Scholar 

  33. Idem, in Proceedings of the 2nd Australian SAMPE Symposium Exhibition, Melbourne (1989) p. 106.

  34. J. Rodel, J. F. Kelly andB. R. Lawn,J. Amer. Ceram. Soc. 73 (1990) 3313.

    Google Scholar 

  35. X. Z. Hu andF. H. Wittmann,Mater. and Struct., in press.

  36. X. Z. Hu, “R-curve and compliance φ-function for crack-interface bridging stress analysis”, to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, X.Z., Mai, Y.W. General method for determination of crack-interface bridging stresses. J Mater Sci 27, 3502–3510 (1992). https://doi.org/10.1007/BF01151826

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01151826

Keywords

Navigation