Skip to main content
Log in

Low-temperature synthesis, pyrolysis and crystallization of tantalum oxide gels

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Tantalum oxide gels in the form of transparent monoliths and powders have been prepared from hydrolysis of tantalum pentaethoxide under controlled conditions using different mole ratios of Ta(OC2H5)5∶C2H5OH∶H2O∶HCl. Alcohol acts as the mutual solvent and HCl as the deflocculating agent. For a fixed alkoxide∶ water∶ HCl ratio, the time of gel formation increased with the alcohol to alkoxide molar ratio. Thermal evolution of the physical and structural changes in the gel has been monitored by differential thermal analysis, thermogravimetric analysis, X-ray diffraction, and infrared spectroscopy. On heating to ∼ 400 °C, the amorphous gel crystallized into the low-temperature orthorhombic phase β-Ta2O5, which transformed into the high-temperature tetragonal phase α-Ta2O5 when further heated to ∼ 1450 °C. The volume fraction of the crystalline phase increased with the firing temperature. The α-Ta2O5 converted back into the low-temperature phase, β-Ta2O5, on slow cooling through the transformation temperature of 1360 °C, indicating a slow but reversible transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Seki, T. Unagami andO. Kogure,J. Electrochem. Soc. 132 (1985) 3054.

    Google Scholar 

  2. S. Oshio, M. Yamamoto, J. Kuwata andT. Matsuoka,J. Appl. Phys. 71 (1992) 3471.

    Google Scholar 

  3. D. H. Hensler, J. D. Cathbert, R. J. Martin andP. K. Tien,Appl. Optics 14 (1971) 1037.

    Google Scholar 

  4. H. Terui andM. Kobayashi,Appl. Phys. Lett. 32 (1978) 666.

    Google Scholar 

  5. F. Rubio, J. M. Albella andJ. M. Martinz-Duart,Thin Solid Films 90 (1982) 405.

    Google Scholar 

  6. G. M. Choi, H. L. Tuller andJ. S. Haggerty,J. Electrochem. Soc. 136 (1989) 835.

    Google Scholar 

  7. J. P. Cronin, T. J. Gudgel, L. Zanotto, B. Dutta, G. P. Rajendran, G. Dale, E. D. Zanotto, E. V. Uhlmann, G. L. Smith, M. Denesuk, B. D. Fabes, D. R. Uhlmann, J. A. Leavitt andJ. R. Martin, in “Ceramic Superconductors II”, edited by M. F. Yan, (American Ceramic Society, Westerville, OH, 1988) p. 511.

    Google Scholar 

  8. A. Reisman, F. Holtzberg, M. Berkenblit andM. Barry,J. Am. Chem. Soc. 78 (1956) 5414.

    Google Scholar 

  9. D. R. Kudrak andM. J. Sienko,Inorg. Chem. 6 (1967) 880.

    Google Scholar 

  10. O. N. Breusov, A. N. Dremin, V. N. Drobyshev andS.V. Pershin,Russ. J. Inorg. Chem. 18 (1973) 157.

    Google Scholar 

  11. F. Izumi andH. Kodoma,J. Less-Common Metals 63 (1979) 305.

    Google Scholar 

  12. Y. Syono, M. Kikuchi, T. Goto andK. Fukuoka,J. Solid State Chem. 50 (1983) 133.

    Google Scholar 

  13. H.C. Ling, M. F. Yan, andW. W. Rhodes, in “Science of Ceramic Chemical Processing”, edited by L. L. Hench and D. R. Ulrich (Wiley, New York, 1986) p. 285.

    Google Scholar 

  14. JCPDS Card 25–922 (Powder Diffraction File, International Centre for Diffraction Data, Swarthmore, PA, USA).

  15. JCPDS Card 19–1300 (Powder Diffraction File, International Centre for Diffraction Data, Swarthmore, PA, USA).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bansal, N.P. Low-temperature synthesis, pyrolysis and crystallization of tantalum oxide gels. J Mater Sci 29, 5065–5070 (1994). https://doi.org/10.1007/BF01151098

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01151098

Keywords

Navigation