Skip to main content
Log in

The ultrastructure and connections of blood vessels supplying the rat carotid body and carotid sinus

  • Published:
Journal of Neurocytology

Summary

The morphology of blood vessels supplying the carotid body and carotid sinus was analysed in 41 rats by using a combination of light microscopic, transmission electron microscopic and scanning electron microscopic methods. We found that a large sphincter-like intimai cushion was located at the orifice of thecarotid body artery, where the vessel arose from the external carotid or occipital artery. The sphincter contained circumferential smooth muscle and constricted the diameter of the orifice to less than half. After reaching the carotid body, the carotid body artery typically divided into three or four first-order and five or more second-order branches. Usually three or foursecond-order branches supplied the carotid body, but all other branches continued on to such structures as the superior cervical ganglion, nodose ganglion, vagus nerve and carotid sinus.Third andfourth-order branches gave rise toterminal arterioles that supplied the glomus tissue. Vessels resemblingprecapillary sphincters were located at the junction of terminal arterioles and capillaries. Precapillary sphincters had a wall comprised of protruding endothelial cells surrounded by smooth muscle cells or pericytes. Most terminal arterioles gave rise to two types of capillaries.Type I capillaries penetrated a glomus cell cluster and had an intimate association with glomus cells of that cluster had a luminal diameter ranging from about 8 to over 20 μm, but varied in calibre along their length. These vessels followed a winding course, made one or more U-shaped turns, and usually had multiple connections with venules. Type I capillaries had a thin fenestrated endothelium, an incomplete covering of pericytes, and a thin basal lamina. By contrast,type II capillaries did not penetrate glomus cell clusters, had a uniform diameter of about 7 μm, and had both straight and curved regions. Both types of capillaries were bypassed byarteriovenous anastomoses formed by terminal arterioles that joined small venules directly.Venules of the carotid body were interconnected with one another and joined major veins of the neck via several routes.

Arterioles derived from the carotid body artery also supplied an extensive network of vasa vasorum in the adventitia of the carotid sinus. Short capillaries and larger shunt vessels connected arterioles with the numerous venules in the sinus wall; and the venules in turn were connected to the venous plexus at the surface of the carotid body.

We conclude that the arterial branching pattern, intimai cushions and precapillary sphincters participate in the control of carotid body blood flow and also may influence plasma skimming. However, the existence of arteriovenous anastomoses in addition to at least two types of capillaries indicates that blood flow to the chemoreceptive tissue can be regulated independently of total blood flow. Furthermore, the redundancy of venous connections may be related to the sensitivity of carotid body chemoreceptors to changes in venous pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acker, H. (1980) The meaning of tissuePO2 and local blood flow for the chemoreceptive process of the carotid body.Federation Proceedings 39, 2641–47.

    Google Scholar 

  • Acker, H. &Lübbers, D. W. (1975) The meaning of the tissuePO2 of the carotid body for the chemoreceptive process. InThe Peripheral Arterial Chemoreceptors (edited byM. J. Purves), pp. 325–43. New York: Cambridge University Press.

    Google Scholar 

  • Acker, H. &Lübbers, D. W. (1977) Relationship between local flow, tissue PO2 and total flow of the cat carotid body. InChemoreception in the Carotid Body (edited byH. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lubbers andR. W. Torrance), pp. 271–76. New York: Springer-Verlag.

    Google Scholar 

  • Acker, H. &O'Regan, R. G. (1981) The effects of stimulation of autonomic nerves on carotid body blood flow in the cat.Journal of Physiology 315, 99–110.

    Google Scholar 

  • Adams, W. E. (1958)The Comparative Morphology of the Carotid Body and Carotid Sinus. Springfield: Thomas.

    Google Scholar 

  • Addicks, K., Weigelt, H., Hauck, G., Lübbers, D. W. &Knoche, H. (1979) Light- and electronmicroscopic studies with regard to the role of intraendothelial structures under normal and inflammatory conditions.Bibliotheca Anatomica 17, 21–35.

    Google Scholar 

  • Al-Lami, F. &Murray, R. G. (1968) Fine structure of the carotid body ofMacaca mulata monkey.Journal of Ultrastructure Research 24, 465–78.

    Google Scholar 

  • Anderson, A. O. &Anderson, N. D. (1975) Studies on the structure and permeability of the microvasculature in normal rat lymph nodes.American Journal of Pathology 80, 387–418.

    Google Scholar 

  • Bingmann, D., Schultze, H. &Caspers, H. (1975) Activity of chemoreceptors in the carotid body of the cat in relation to changes in venous pressure. InThe Peripheral Arterial Chemoreceptors (edited byM. J. Purves), pp. 345–56. New York: Cambridge University Press.

    Google Scholar 

  • Biscoe, T. J. &Stehbens, W. E. (1966) Ultrastructure of the carotid body.Journal of Cell Biology 30, 563–78.

    Google Scholar 

  • Böck, P. (1973) Das Glomus caroticum der Maus.Advances in Anatomy and Embryology and Cell Biology 48, 1–84.

    Google Scholar 

  • Boyd, J. D. (1937) The development of the human carotid body.Contributions to Embryology 152, 1–31.

    Google Scholar 

  • Bruns, R. R. &Palade, G. E. (1968) Studies on blood capillaries.Journal of Cell Biology 37, 244–76.

    Google Scholar 

  • Burnstock, G. (1975) Innervation of vascular smooth muscle: histochemistry and electron microscopy.Clinical and Experimental Pharmacology and Physiology 2, 7–20.

    Google Scholar 

  • Chambers, R. &Zweifach, B. W. (1944) Topography and function of the mesenteric capillary circulation.American Journal of Anatomy 75, 173–205.

    Google Scholar 

  • Chungcharoen, D., Daly, M. D. B., Neil, E. &Schweitzer, A. (1952a) The effect of carotid occlusion upon the intrasinusal pressure with special reference to vascular communications between the carotid and vertebral circulations in the dog, cat and rabbit.Journal of Physiology 117, 56–76.

    Google Scholar 

  • Chungcharoen, D., Daly, M. D. B. &Schweitzer, A. (1952b) The blood supply of the carotid body in cats, dogs and rabbits.Journal of Physiology 117, 347–58.

    Google Scholar 

  • Clara, M. (1956) Die Arterio-Venösen Anastomosen. Wien: Spinger-Verlag.

    Google Scholar 

  • Comroe, J. H. (1964) The peripheral chemoreceptors. InHandbook of Physiology, Section 3, Vol. IRespiration (edited byW. O. Fenn andH. Rahn), pp. 564–83. Washington: American Physiological Society.

    Google Scholar 

  • Comroe, J. H. &Schmidt, C. F. (1938) The part played by reflexes from the carotid body in the chemical regulation of respiration in dog.American Journal of Physiology 121, 75–97.

    Google Scholar 

  • Daly, M. D. B., Lambertsen, C. J. &Schweitzer, A. (1954) Observations on the volume of blood flow and oxygen utilization of the carotid body in the cat.Journal of Physiology 125, 67–89.

    Google Scholar 

  • De Boissezon, P. (1943) Les appareils de réglage de la circulation du corpuscule carotidien.Bulletin d'Histologie Appliquee et de Technique microscopique 20, 136–40.

    Google Scholar 

  • De Castro, F. (1951) Sur la structure de la synapse dans les chemorecepteurs: Leur mécanisme d'excitation et rôle dans la circulation sanguine locale.Acta Physiologica Scandinavica 22, 14–43.

    Google Scholar 

  • De Castro, F. &Rubio, M. (1968) The anatomy and innervation of the blood vessels of the carotid body and the role of chemoreceptive reactions in the autoregulation of the blood flow. InArterial Chemoreceptors (edited byR. W. Torrance), pp. 267–77. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • De Kock, L. L. (1960) The sinusoids of the carotid body tissue as part of the reticulo-endothelial system.Acta Anatomica 42, 213–26.

    Google Scholar 

  • Eyzaguirre, C. &Fidone, S. J. (1980) Transduction mechanisms in carotid body: glomus cells, putative neurotransmitters, and nerve endings.American Journal of Physiology 239, C135-C152.

    Google Scholar 

  • Fourman, J. &Moffat, D. B. (1961) The effect of intra-arterial cushions on plasma skimming in small arteries.Journal of Physiology 158, 374–80.

    Google Scholar 

  • Goormaghtigh, N. &Pannier, R. (1939) Les paraganglions du coeur et des zones vasosensibles carotidienne et cardio-aortique chez le chat adulte.Archives de Biologie 50, 455–533.

    Google Scholar 

  • Gorgas, K. &Böck, P. (1975) Studies on intra-arterial cushions: I. Morphology of the cushions at the origins of intercostal arteries in mice.Anatomy and Embryology 148, 59–72

    Google Scholar 

  • Greene, E. C. (1935)Anatomy of the Rat. New York: Hafner Publishing Company.

    Google Scholar 

  • Habeck, J.-O., Honig, A., Pfeiffer, C. &Schmidt, M. (1981) The carotid bodies in spontaneously hypertensive (SHR) and normotensive rats — a study concerning size, location and blood supply.Anatomischer Anzeiger 150, 374–84.

    Google Scholar 

  • Hassler, O. (1962) Physiological intima cushions in the large cerebral arteries of young individuals.Acta Pathologica et Microbiologica Scandinavica 55, 19–27.

    Google Scholar 

  • Hayes, J. R. (1967) Histological changes in constricted arteries and arterioles.Journal of Anatomy 101, 343–49.

    Google Scholar 

  • Heath, D. &Edwards, C. (1971) The glomic arteries.Cardiovascular Research 5, 303–12.

    Google Scholar 

  • Heistad, D. D. &Marcus, M. L. (1979) Role of vasa vasorum in nourishment of the aorta.Blood Vessels 16, 225–38.

    Google Scholar 

  • Hesse, M. &Böck, P. (1980) Studies on intra-arterial cushions: III. The cushions at the origin of the rat carotid body artery (CBA).Zeitschrift für Mikroskopisch-Anatomische Forschung 94, 471–78.

    Google Scholar 

  • Higginbotham, A. C., Higginbotham, F. H. &Williams, T. W. (1963) Vascularization of blood vessel walls. InInternational Symposium on the Evolution of Atherosclerotic Plaque (edited byR. J. Jones), pp. 256–77. Chicago: The University of Chicago Press.

    Google Scholar 

  • Jellinger, K. (1974) Intimal cushions in ciliary arteries of the dog.Experientia 30, 188–89.

    Google Scholar 

  • Kobayashi, S. (1968) Fine structure of the carotid body of the dog.Archivum Histologicum Japonicum 30, 95–120.

    Google Scholar 

  • Lahiri, S. (1980) Role of arterial O2 flow in peripheral chemoreceptor excitation.Federation Proceedings 39, 2648–52.

    Google Scholar 

  • Langille, B. L. &Adamson, S. L. (1981) Relationship between blood flow direction and endothelial cell orientation at arterial branch sites in rabbits and mice.Circulation Research 48, 481–88.

    Google Scholar 

  • Lübbers, D. W., Teckhaus, L. &Seidl, E. (1977) Capillary distances and oxygen supply to the specific tissue of the carotid body. InChemoreception in the Carotid Body (edited byH. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers andR. W. Torrance), pp. 62–8. New York: Springer-Verlag.

    Google Scholar 

  • Majno, G. (1965) Ultrastructure of the vascular membrane. InHandbook of Physiology Section 2Circulation, Vol. III (edited byW. F. Hamilton andP. Dow), pp. 2293–375. Washington, DC: American Physiology Society.

    Google Scholar 

  • Majno, G., Shea, S. M. &Leventhal, M. (1969) Endothelial contraction induced by histamine-type mediators.Journal of Cell Biology 42, 647–72.

    Google Scholar 

  • McDonald, D. M. (1981) Peripheral chemoreceptors: structure-function relationships of the carotid body. InRegulation of Breathing Part I (edited byT. F. Hornbein), pp. 105–319. New York: Marcel Dekker, Inc.

    Google Scholar 

  • McDonald, D. M. (1983a) A morphometric analysis of blood vessels and perivascular nerves in the rat carotid body.Journal of Neurocytology 12, 155–99.

    Google Scholar 

  • McDonald, D. M. (1983b) Morphology of the rat carotid sinus nerve: I. Course, connections, dimensions and ultrastructure.Journal of Neurocytology 12, in press.

  • McDonald, D. M. &Blewett, R. W. (1981) Location and size of carotid body-like organs (paraganglia) revealed in rats by the permeability of blood vessels to Evans blue dye.Journal of Neurocytology 10, 607–43.

    Google Scholar 

  • McDonald, D. M. &Haskell, A. (1983) Morphology of connections between arterioles and capillaries in the rat carotid body analysed by reconstructing serial sections. InPeripheral Arterial Chemoreceptors: Proceedings of the VII International Meeting (edited byD. J. Pallot). London: Croom Helm Limited. In press.

    Google Scholar 

  • McDonald, D. M. &Mitchell, R. A. (1975) The innervation of glomus cells, ganglion cells and blood vessels in the rat carotid body: a quantitative ultrastructural analysis.Journal of Neurocytology 4, 177–230.

    Google Scholar 

  • McEwen, L. M. (1956) The effect on the isolated rabbit heart of vagal stimulation and its modification by cocaine, hexamethonium and ouabain.Journal of Physiology 131, 678–89.

    Google Scholar 

  • Moffat, D. B. (1959) An intra-arterial regulating mechanism in the uterine artery of the rat.Anatomical Record 134, 107–23.

    Google Scholar 

  • Moffat, D. B. (1969) Intra-arterial cushions in the arteries of the rat's eye.Acta Anatomica 72, 1–11.

    Google Scholar 

  • Moffat, D. B. &Creasey, M. (1971) The fine structure of the intra-arterial cushions at the origins of the juxtamedullary afferent arterioles in the rat kidney.Journal of Anatomy 110, 409–19.

    Google Scholar 

  • Murakami, T. (1975) Pliable methacrylate casts of blood vessel: use in a scanning electron microscope study of the microcirculation in rat hypophysis.Archivum Histologicum Japonicum 38, 151–68.

    Google Scholar 

  • Muratori, G. (1943) Ricerche anatomiche sulla vascolarizzazione sanguigna del glomo carotico.Archivio Dello Instituto Biochimico Italiano 15, 145–69.

    Google Scholar 

  • Niedorf, H. R. (1970) Die normale und pathologische Anatomie des Glomus caroticum.Medizinische Welt 21, 251–57.

    Google Scholar 

  • Phelps, P. C. &Luft, J. H. (1969) Electron microscopical study of relaxation and constriction in frog arterioles.American Journal of Anatomy 125, 399–428.

    Google Scholar 

  • Purves, M. J. (1970) The role of the cervical sympathetic nerve in the regulation of oxygen consumption of the carotid body of the cat.Journal of Physiology 209, 417–31.

    Google Scholar 

  • Reidy, M. A. (1979) Arterial endothelium around rabbit aortic ostia: A SEM study using vascular casts.Experimental and Molecular Pathology 30, 327–36.

    Google Scholar 

  • Rhodin, J. A. G. (1967) The ultrastructure of mammalian arterioles and precapillary sphincters.Journal of Ultrastructure Research 18, 181–223.

    Google Scholar 

  • Robertson, H. F. (1929) Vascularization of the thoracic aorta.Archives of Pathology 8, 881–93.

    Google Scholar 

  • Rossatti, B. &D'agostini, N. (1953) Effetti della legatura dell'arteria carotide comune sulla circolazione sanguigna e sulla struttura del glomo carotideo.Archivo di Scienze Biologiche 37, 496–506.

    Google Scholar 

  • Schäfer, D., Seidl, E., Acker, H., Keller, H. P. &Lübbers, D. W. (1973) Arteriovenous anastomoses in the cat carotid body.Zeitschrift für Zellforschung und Mikroskopische Anatomie 142, 515–24.

    Google Scholar 

  • Schumacher, S. (1938) Über die Bedentung der arteriovenösen Anastomosen und der epitheloiden Muskelzellen (Quellzellen).Zeitschrift für Mikroskopisch-Anatomische Forschung 43, 107–30.

    Google Scholar 

  • Seidl, E. (1975) On the morphology of the vascular system of the carotid body of cat and rabbit and its relation to the glomus Type I cells. InThe Peripheral Arterial Chemoreceptors (edited byM. J. Purves), pp. 293–99. New York: Cambridge University Press.

    Google Scholar 

  • Seidl, E. (1976) On the variability of form and vascularization of the cat carotid body.Anatomy and Embryology 149, 79–86.

    Google Scholar 

  • Serafini-Fracassini, A. &Volpin, D. (1966) Some features of the vascularization of the carotid body of the dog.Acta Anatomica 63, 571–79.

    Google Scholar 

  • Stehbens, W. E. (1981) Intimal cushions (pads): structure, location and functional significance. InStructure and Function of the Circulation Vol. 2 (edited byC. J. Schwartz, N. T. Werthessen andS. Wolf), pp. 603–34. New York: Plenum Press.

    Google Scholar 

  • Stensaas, L. J. (1975) Pericytes and perivascular microglial cells in the basal forebrain of the neonatal rabbit.Cell and Tissue Research 158, 517–41.

    Google Scholar 

  • Takayanagi, T., Rennels, M. L. &Nelson, E. (1972) An electron microscopic study of intimal cushions in intracranial arteries of the cat.American Journal of Anatomy 133, 415–30.

    Google Scholar 

  • Weibel, E. R. (1974) On pericytes, particularly their existence on lung capillaries.Microvascular Research 8, 218–35.

    Google Scholar 

  • Wolinsky, H. &Glagov, S. (1967) Nature of species differences in the medial distribution of aortic vasa vasorum in mammals.Circulation Research 20, 409–21.

    Google Scholar 

  • Yohro, T. &Burnstock, G. (1973) Fine structure of ‘Intimal Cushions’ at branching sites in coronary arteries of vertebrates.Zeitschrift für Anatomie und Entwicklungsgeschichte 140, 187–202.

    Google Scholar 

  • Zweifach, B. W. (1939) The character and distribution of the blood capillaries.Anatomical Record 73, 475–95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonald, D.M., Larue, D.T. The ultrastructure and connections of blood vessels supplying the rat carotid body and carotid sinus. J Neurocytol 12, 117–153 (1983). https://doi.org/10.1007/BF01148090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01148090

Keywords

Navigation