Skip to main content
Log in

Membrane function and vascular reactivity

  • Hypothesis
  • Published:
Bioscience Reports

Abstract

This communication examines the possibility that nitric oxide (NO) production by endothelial cells results from changes in cell membrane fluidity. Lysophosphatidylcholine (LPC) alters fluidity of the endothelial cell membranes causing vascular relaxation. Through membrane alterations LPC influences function of a number of membrane receptors and modulates enzyme activity. As a result of detergent action, lysophosphatidylcholine (LPC) causes activation of guanylate cyclase, stimulates syalytransferase and regulates protein kinase C activity. It has already been demonstrated that ionic detergents, such as Triton X-100 also cause vascular relaxation, possibly induced by NO production from endothelial cells. It is postulated that production of nitric oxide results from changes in membrane viscosity; this may represent a mechanism for its regulation in biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Furchgott, R. F. and Vanhoutte, P. M. (1989) Endothelium-derived relaxing and contracting factors.FASEB J. 3:2007–2018.

    PubMed  Google Scholar 

  2. Vanhoute, P. M. (1989) Endothelium and control of vascular function.Hyptertension,13:658–667.

    Google Scholar 

  3. Moncada, S., Palmer, R. M. J. and Higgs, E. A. (1991) Nitric oxide: physiology, pathophysiology and pharmacology.Pharmacological Reviews 2:109–142.

    Google Scholar 

  4. Bing, R. J. and Saeed, M. (1987) The role of lysolecithin in the relaxation of vascular smooth muscle.Biosci. Rep. 10:783–789.

    Google Scholar 

  5. Bing, R. J., Saito, T., Wolf, A. and Menon, N. K. (1988) The effect of phospholipid (lysophosphatidylcholine) on arterial relaxationin vitro andin situ.Trans. Assoc. Am. Phys.,C1:70–78.

    Google Scholar 

  6. Menon, N. K., Saito, T., Wolf, A. and Bing, R. J. (1989) Correlation of lysophosphatidylcholineinduced vs. spontaneous relation to cyclic GMP levels in rabbit thoracic aortas.Life Sci. 44:611–618.

    PubMed  Google Scholar 

  7. Saito, T., Wolf, A., Menon, N. K., Saeed, M. and Bing, R. J. (1988) Lysolectithins as endothelium-dependent vascular smooth muscle relaxants that differ from endothelium-derived relaxing factor (nitric oxide).Proc. Natl. Acad. Sci. 85:8246–8250.

    PubMed  Google Scholar 

  8. Shiniktzky, M. (1984)Membrane Fluidity and Cellular Function in Physiology of Membrane Fluidity. eds. M. Shinitzky, CRC Press, Boca Raton, Fl. 1–51.

    Google Scholar 

  9. Bing, R. J. and Saeed, M. (1987) The role of lysolecithin in the relaxation of vascular smooth muscle.Biosci. Rep. 10:783–789.

    Google Scholar 

  10. Fujimoto, M. and Okabayashi, T. (1975) Proposed mechanisms of stimulation and inhibition of guanylate cyclase with reference to the action of chlorpromazine, phosphilipases and Triton X-100.Biochem. Biophys. Rg. Commu. 67:1332–1336.

    Google Scholar 

  11. Lipid Conformation in Model Membranes and Biological Membranes.Q. Rev. Biophys. (1980)13:19.

    Google Scholar 

  12. Smith, I. C. P. (1979) Organization and dynamics of membrane lipids as determined by magnetic resonance spectroscopy.Can. J. Biochem. 57:1.

    PubMed  Google Scholar 

  13. McConnell, H. M. (1976)Molecular Motion in Biological Membrane in Spin Labelling: Theory and Applications, Berliner, L. J. eds., Academic Press, New York, 525.

    Google Scholar 

  14. Shinitzky, M. and Barenholz, Y. (1978) Fluidity parameters of lipid regions determined by fluorescence polarization.Biochim. Biophys. Acta 525:367.

    Google Scholar 

  15. Chapman, D. (1973) Recent Studies of Lipids, Lipid Cholesterol and Membrane System, in Biological Membranes. Vol. 2, (Chapman, D. and Wallach, D. F., eds.), Academic Press, New York, 91.

    Google Scholar 

  16. Shinitzky, M. and Inbar, M. (1976) Microviscosity parameters and protein mobility in biological membranes.Biochim. Biophys. Acta. 433:133.

    PubMed  Google Scholar 

  17. Cooper, R. A. (1977) Abnormalities of cell membrane fluidity in the pathogenesis of disease.N. Engl. J. Med. 197:371.

    Google Scholar 

  18. Hirata, F. and Axelrod, J. (1980) Phospholipid methylation and biological signal transmission.Science 208:1082.

    Google Scholar 

  19. Helenius, A. and Simons, K. (1975) Solubilization of membranes by detergents.Biochim. et Biophysica Acta 415:29–79.

    Google Scholar 

  20. McBain, E. L. and Hutchinson, E. (1953)Solubilization and Other Phenomena. Academic Press, New York.

    Google Scholar 

  21. Bakardjera, (1979) Modulation of the β receptor adenylate cyclase interactions in cultured change liver cells by phospholipid enrichment.Biochemistry 18:3016.

    PubMed  Google Scholar 

  22. Heron, D. S., Israeli, M., Hershkowitz, M., Samuel, D. and Shinitzky, M. (1981) Lipid induced modulation of opiate receptors in mouse brain membranes.Eur. J. Pharmacol. 72:361–364.

    PubMed  Google Scholar 

  23. Heron, D. S., Shinitzky, M., Hershkowitz, M. and Samuel, D. (1980) Lipid fluidity markedly modulates the binding of serotonim to mouse brain membranes.Proc. Natl. Acad. Sci., USA 77:7463–7467.

    Google Scholar 

  24. Muller, C. and Shinitzky, M. (1979) Modulation of transferrin receptors in bone marrow cells by changes in membrane fluidity.Br. J. Haematol. 42:355–362.

    PubMed  Google Scholar 

  25. Sandermann, J. (1978) Regulation of membrane enzymes by lipids.Biochim. Biophys. Acta 515:209.

    PubMed  Google Scholar 

  26. Cornan, J. E. and Gelmann, E. P. (1975) Physical properties of membrane lipids: biological relevance and regulation.Bacteriol. Rev.,39:232.

    PubMed  Google Scholar 

  27. Farias, R. N., Broj, B., Morero, R. D., Sineriz, F. and Trucco, R. E. (1975) Regulation at allosteric membrane bound enzymes through changes in membrane lipid composition.Biochim. Biophys. Acta 415:231.

    PubMed  Google Scholar 

  28. Salesse, R., Garnier, J. and Daveloose, D. (1982) Modulation of adenylate cyclase activity by the physical state of pigeon erythrocyte membrane. II. Fluidity controlled coupling between the subunits of the adenylate cyclase system.Biochem. 21:1587.

    Google Scholar 

  29. Van den Bosch, H. (1980) Intracellular phospholipases A.Biochim. et Biophysic. Acta 604:191–246.

    Google Scholar 

  30. Van den Bosch, M. (1992)Phosphilipases and Phospholipids.(Hawthorne, J. N. and Ansell, J. B. eds) Elsevier Biomedical Press.

  31. Saito, T., Wolf, A., Menon, N. K., Saeed, M. and Bing, R. J. (1988) Lysolethins as endothelium-dependent vascular smooth muscle relaxants that differ from endothlium-derived relaxing factor (nitric oxide).Proc. Natl., Acad. Sci. USA 85:8246–8250.

    Google Scholar 

  32. Huang, H. C. and Lee, C. Y. (1985) Relaxant effect of phospholipase A2 from vipera vusseli snake venom on rat aorta.Europ. J. Pharmacol. 118:139–146.

    Google Scholar 

  33. Förstermann, V. and Neufang, B. (1985) Endothelium-dependent vasodilation by melitin: Are lipoxygenase products involved?Am. J. Physiol. 249:1414–1419.

    Google Scholar 

  34. Förstermann, V., Goapelt-Strübe, M., Fröhlich, J. C. and Busse, R., (1986) Inhibitors of aceylcoenzyme A: lysolecithin acyltransferase activates the production of endothelium-derived vascular relaxing factor.J. Pharmacol. Exp. Ther. 238:352–359.

    PubMed  Google Scholar 

  35. Shier, W. T., Baldwin, J. H., Nilsen-Hamilton, M., Hamilton, R. T. and Thanassi, N. M. (1976) Regulation of guanylate and adenylate cyclase activities by lysolecithin.Proc. Natl., Acad. Sci. 73:1586–1590.

    Google Scholar 

  36. Shier, W. T. and Trotter, J. T. (1976) Stimulation of liver microsomal sialytransferase activity by lysolecithin. FEBS let.62:165–168.

    Google Scholar 

  37. Karli, J. N., Karikus, G. A., Hatzipavlou, P. V., Levis, G. M. and Moulopoulos (1979) The inhibition of Na+ and K+ ATPase activity of rabbit and dog heart sarcolemma by LPC.Life Sci. 24:1869–1875.

    PubMed  Google Scholar 

  38. Owens, J., Kenneth, F. F. and Weglicki, W. B. (1982) Effect of fatty acid intermediates on Na+ K+ ATPase activity of sarcolemma.Am. J. Physiol. 11:H456–461.

    Google Scholar 

  39. Fink, L. and Gross, R. W. (1984) Modulation of canine myocardial sarcolemmal membrane fluidity by amphiphilic compounds.Circ. Res. 5:585–594.

    Google Scholar 

  40. Wolf, A., Saito, T., Dudek, R. and Bing, R. J. (1991) Effect of lysophosphatidylcholine on coronary and renal circulation in the rabbit.Lipids 3:223–226.

    Google Scholar 

  41. Weltzien, H. U. (1979) Cytolitic and membrane perturbing properties of lysophosphatidylcholine.Biochimica et Biophys. Acta 558:259–287.

    Google Scholar 

  42. Gross, R. W. and Sobel, B. E. (1982) Lysophosphatidylcholine metabolism in the rabbit heart. Characterization of a metabolic pathway and partial purification of myocardial lysophospholipiase transacyclase.J. Biol. Chem. 257:6702–6708.

    PubMed  Google Scholar 

  43. Shaik, Downes. (1981) A reassessment of the lysolipid hypothesis.Circ. Res. 49:316–325.

    PubMed  Google Scholar 

  44. Corr, P. B., Snyder, D. W., Cain, M. E., Crafford, W. A. Jr., Gross, R. W. and Sobel, B. E. (1981) Electrophysiological effects of amphophiles on canine purkinje fibers—implications for dysrhythmia secondary to ischemia.Circ. Res. 49:354–363.

    PubMed  Google Scholar 

  45. Kinnaird, A. A. A., Choy, P. C. and Man, R. Y. K. (1988) Lysophosphatidylcholine accumulation in the ischemic canine heart.Lipids 23:32–35.

    PubMed  Google Scholar 

  46. Conforto, A. and Bing, R. J. The effect of LPC and digitonin on NO production by freshly harvested endothelial cells. (Submitted for publication).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bing, R.J., Termin, A., Conforto, A. et al. Membrane function and vascular reactivity. Biosci Rep 13, 61–67 (1993). https://doi.org/10.1007/BF01145958

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01145958

Key Words

Navigation