Skip to main content
Log in

Outer membrane peptides ofYersinia pestis mediating siderophore-independent assimilation of iron

  • Original Articles
  • Published:
Biology of Metals Aims and scope Submit manuscript

Summary

It is established that wild-type cells ofYersinia pestis absorb exogenous hemin or Congo red and thus grow as pigmented colonies at 26° C on media containing these chromatophores (Pgm+). Pgm+ isolates are known to possess a siderophore-independent mechanism of iron-transport (required for growth in iron-deficient medium) which is absent in avirulent Pgm mutants. Production of the bacteriocin pesticin and linked invasins (Pst+) is an additional defined virulence factor of yersiniae; mutation of Pgm+,Pst organisms to pesticin-resistance (Pstr) results in concomitant conversion to Pgm. In this study, autoradiograms of two-dimensional gels of [35S]methionine-labeled outer membranes from Pgm mutants were compared to those of the Pgm+,Pst+ or Pgm+,Pst parent. An apparently single predominant peptide present in these preparations (> 10% of total membrane protein) existed as a family of iron-modifiable 17.9-kDa molecules focusing down to isoelectric points of about 4.6 and up to 5.89. Expression of eight detectable Pst+-specific peptides was not significantly influenced by exogenous iron. Pgm+ yersiniae constitutively produced pigmentation-specific peptide F and five iron-repressible peptides termed IrpA to IrpE. Typical spontaneous mutation to Pgm resulted in loss of peptide F and IrpB-E. A rare Pgm+,Pstr mutant, selected on Congo red agar containing pesticin, also lost IrpB-E but retained peptide F. This isolate, like Pgm mutants, failed to grow in iron-deficient medium. Regardless of phenotype, all yersiniae utilized hemin, hemopexin, myoglobin, hemoglobin, and ferritin, but not transferrin or lactoferrin, as sole sources of iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bagg A, Neilands JB (1987) Ferric uptake regulation protein acts as a repressor, employing iron(II) as a cofactor to bind the operator of an iron transport operon inEscherichia coli. Biochemistry 26:5471–5477

    PubMed  Google Scholar 

  • Ben-Gurion R, Hertman I (1958) Bacteriocin-like material produced by Pasteurella pestis. J Gen Microbiol 19:289–297

    PubMed  Google Scholar 

  • Ben-Gurion R, Shafferman A (1981) Essential virulence determinants of differentYersinia species are carried on a common plasmid. Plasmid 5:183–187

    PubMed  Google Scholar 

  • Blose SH (1986) The mouse INH/3T3 cell line protein database developed from computer-analyzed two-dimensional gels: key protein identification by experiments and amino acid ratios. In: Dunn MJ (ed) Electrophoresis '86: Proceedings of the Fifth Meeting of the International Electrophoresis Society. VCH Verlagsgesellschaft, Weinheim, pp 552–555

    Google Scholar 

  • Brubaker RR (1970) Mutation rate to nonpigmentation inPasteurella pestis. J Bacteriol 98:1404–1406

    Google Scholar 

  • Brubaker RR (1972) The genusYersinia: biochemistry and genetics of virulence. Curr Top Microbiol 57:111–158

    Google Scholar 

  • Brubaker RR, Beesley ED, Surgalla MJ (1965)Pasteurella pestis: role of pesticin I and iron in experimental plague. Science 149:422–424

    Google Scholar 

  • Brubaker RR, Surgalla MJ (1961) Pesticins I. Pesticin-bacterium interrelationships, and environmental factors influencing activity. J Bacteriol 82:940–949

    PubMed  Google Scholar 

  • Brubaker RR, Surgally MJ (1962) Pesticins. II. Production of pesticin I and II. J Bacteriol 84:539–545

    PubMed  Google Scholar 

  • Burrows TW (1963) Virulence of Pasteurella pestis and immunity of plague. Ergeb Mikrobiol 37:59–113

    Google Scholar 

  • Carniel E, Mazigh D, Mollaret HH (1987) Expression of ironregulated proteins inYersinia species and their relation to virulence. Infect Immun 55:277–280

    PubMed  Google Scholar 

  • Carniel E, Antoine J-C, Guiyoule A, Guiso N, Mollaret HH (1989a) Purification, location and immunological charaterization of the iron-regulated high-molecular-weight proteins of the highly pathogenic Yersiniae. Infect Immun 57:540–545

    PubMed  Google Scholar 

  • Carniel E, Mercereau-Puijalon O, Bonnefoy S (1989b) The gene coding for the 190000-dalton iron-regulated protein ofYersinia species is present only in the highly pathogenic strains. Infect Immun 57:1211–1217

    PubMed  Google Scholar 

  • Conkell MB, Yanofsky C (1971) Influence of chromosome structure on the frequency oftonB trp deletions inEscherichia coli. J Bacteriol 105:864–872

    PubMed  Google Scholar 

  • Davies JK, Reeves P (1975) Genetics of resistance to colicins inEscherichia coli K-12: cross resistance among colicins of group B. J Bacteriol 123:96–101

    PubMed  Google Scholar 

  • Devignat R (1951) Variétés de l'espécePasteurella pestis. Nouvelle hypothése. Bull WHO 4:247–263

    PubMed  Google Scholar 

  • Ferber DM, Fowler JM, Brubaker RR (1981) Mutations to tolerance and resistance to pesticin and colicins in Escherichia coli Φ. J Bacteriol 146:506–511

    PubMed  Google Scholar 

  • Garrels JI (1979) Two-dimensional gel electrophoresis and computer analysis of proteins synthesized by clonal cell lines. J Biol Chem 254:7961–7977

    PubMed  Google Scholar 

  • Garrels JI (1983) Quantitative two-dimensional gel electrophoresis of proteins. Methods Enzymol 100:411–423

    PubMed  Google Scholar 

  • Garrels JI, Farrar JT, Burwell CB (1984) The QUEST system for computer-analyzed two-dimensional electrophoresis of proteins. In: Celis JE, Bravo R (eds) Two-dimensional gel electrophoresis or proteins. Academic Press, New York, pp 37–91

    Google Scholar 

  • Goguen JD, Yother J, Straley SC (1984) Genetic analysis of the low calcium response inYersinia pestis Mu dl (Ap lac) insertion mutants. J Bacteriol 160:842–848

    PubMed  Google Scholar 

  • Hertman I, Ben-Gurion R (1959) A study of pesticin biosynthesis. J Gen Microbiol 21:135–143

    PubMed  Google Scholar 

  • Higuchi K, Kupferberg LL, Smith JL (1959) Studies on the nutrition and physiology ofPasteurella pestis: III. Effects of calcium ions on the growth of virulent and avirulent strains ofPasteurella pestis. J Bacteriol 77:317–321

    PubMed  Google Scholar 

  • Hu PC, Brubaker RR (1974) Characterization of pesticin: separation of antibacterial activities. J Biol Chem 249:4749–4753

    PubMed  Google Scholar 

  • Hu PC, Yang GCH, Brubaker RR (1972) Specificity, induction, and absorption of pesticin. J Bacteriol 112:212–219

    PubMed  Google Scholar 

  • Jackson S, Burrows TW (1956a) The pigmentation of Pasteurella pestis on a defined medium containing haemin. Br J Exp Pathol 37:570–576

    PubMed  Google Scholar 

  • Jackson S, Burrows TW (1956b) The virulence enhancing effect of iron on non-pigmented mutants of virulent strains ofPasteurella pestis. Br J Exp Pathol 37:577–583

    PubMed  Google Scholar 

  • Lankford CE (1973) Bacterial assimulation of iron. Crit Rev Microbiol 2:273–330

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  Google Scholar 

  • Mehigh RJ, Brubaker RR (1989) Expression of the low-calcium response inYersinia pestis. Microb Pathog 6:203–217

    PubMed  Google Scholar 

  • Neilands JB (1972) Evolution of biological iron-binding centers. Struct Bonding 11:145–170

    Google Scholar 

  • O'Farrell PH (1975) High-resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  Google Scholar 

  • Osborn MJ, Gander JE, Parsi E, Carson J (1972) Mechanism of assembly of the outer membrane ofSalmonella typhimurium. J Biol Chem 247:3962–3972

    PubMed  Google Scholar 

  • Perry RD, Brubaker RR (1979) Accumulation of iron by yersiniae. Infect Immun 137:1290–1298

    Google Scholar 

  • Portnoy DA, Blank HF, Kingsbury DT, Falkow S (1983) Genetic analysis of essential plasmid determinations of pathogenicity inYersinia pestis. J Infect Dis 148:297–304

    PubMed  Google Scholar 

  • Rohlf FJ, Sokal RR (1969) Statistical tables. WH Freeman and Co, San Francisco, pp 240–244

    Google Scholar 

  • Sample AK, Fowler JM, Brubaker RR (1987) Modulation of the low calcium response inYersinia pestis by plasmidplasmid interaction. Microb Pathog 2:443–453

    PubMed  Google Scholar 

  • Sikkema DJ, Brubaker RR (1987) Resistance to pesticin, storage of iron and invasion of HeLa cells by yersiniae. Infect Immun 55:572–578

    PubMed  Google Scholar 

  • Sodeinde OA, Gogeuen JD (1988) Genetic analysis of the 9.5kilobase virulence plasmid ofYersinia pestis. Infect Immun 56:2143–2148

    Google Scholar 

  • Sokal RR, Rohlf FJ (1969) Biometry: the principles and practice of statistics in biological research. Freeman WH and Co, San Francisco, pp 391–395

    Google Scholar 

  • Spurr WA, Bonini CP (1973) Statistical analysis for business decisions. RD Irwin, Homewood, Ill, pp 292–298 and 704

    Google Scholar 

  • Staggs L, Perry RD (1989) Characterization of an iron-responsivefur-like regulatory mechanism inYersinia pestis. Abstr Annu Meet Am Soc Microbiol D202

  • Straley SC, Brubaker RR (1981) Cytoplasmic and membrane proteins of yersiniae cultivated under conditions simulating mammalian intracellar environment. Proc Natl Acad Sci USA 78:1224–1228

    PubMed  Google Scholar 

  • Straley SC, Brubaker RR (1982) Localization in Yersinia pestis of peptides associated with virulence. Infect Immun 36:129–135

    PubMed  Google Scholar 

  • Surgalla MJ, Bessley ED (1969) Congo-red-agar plating medium for detecting pigmentation inPasteurella pestis. Appl Microbiol 18:834–837

    PubMed  Google Scholar 

  • Theil EC (1987) Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu Rev Biochem 56:289–315

    PubMed  Google Scholar 

  • Une T, Brubaker RR (1984) In vivo comparison of avirulent Vwa and Pgm or Pstr phenotypes of yersiniae. Infect Immun 43:895–900

    PubMed  Google Scholar 

  • van Asbeck BS, Verhoef J (1983) Iron and host defense. Eur J Clin Microbiol 2:6–10

    PubMed  Google Scholar 

  • Wake A, Misawa M, Matsui A (1975) Siderochrome production byYersinia pestis and its relation to virulence. Infect Immun 12:1211–1213

    PubMed  Google Scholar 

  • Waring WS, Werkman CH (1942) Growth of bacteria in an iron-free medium. Arch Biochem 1:303–310

    Google Scholar 

  • Wee S, Neilands JB, Bittner ML, Hemming BC, Haymore BL, Seethram R (1988) Expression, isolation, and properties of Fur (ferric uptake regulation) protein ofEscherichia coli. Biol Metals 1:62–68

    Google Scholar 

  • Weinberg ED (1974) Iron and susceptibility to infectious disease. Science 184:952–956

    PubMed  Google Scholar 

  • Wookey P (1982) ThetonB gene product inEscherichia coli. FEBS Lett 139:145–153

    PubMed  Google Scholar 

  • Zahorchak RJ, Brubaker RR (1982) Effect of exogenous nucleotides on Ca2+ dependence and V antigen synthesis inYersinia pestis. Infect Immun 38:953–959

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This is journal article no. 13025 of the Michigan Agricultural Experiment Station.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sikkema, D.J., Brubaker, R.R. Outer membrane peptides ofYersinia pestis mediating siderophore-independent assimilation of iron. Biol Metals 2, 174–184 (1989). https://doi.org/10.1007/BF01142557

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01142557

Key words

Navigation