Skip to main content
Log in

An empirical approach to non-Gaussian polymer network theories

  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In our empirical model a network strand will be idealized by a nonlinear dumbbell. The strand can thus diffuse by Brownian motion, as it is typical for bead-spring kinetic models, and by impulsive diffusion, as it is typical for transient network theories. With the help of a slight generalization of a recently proposed numerical stochastic approach to transient network theories, we study some rheological properties of the model in shear and elongational flow. In elongational flow the nonlinearity is shown to lead to the correct qualitative behavior of the material function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bird, R. B.; Curtiss, C. F.; Armstrong, R. C.; Hassager, O.: Dynamics of polymeric liquids, Vol. 2 Kinetic Theory, 2nd ed. (Wiley, New York, 1987)

    Google Scholar 

  2. Gennes, P. G. de: Scaling concepts in polymer physics, (Cornell University, Ithaca, 1979)

    Google Scholar 

  3. Doi, M.; Edwards, S. F.: The theory of polymer dynamics, (Clarendon Press, Oxford, 1986)

    Google Scholar 

  4. Larson, R. G.: Convection and diffusion of polymer network strands. J. Non-New-tonian Fluid Mech. 13 (1983) 279–308

    Google Scholar 

  5. Lodge, A. S.: A network theory of flow birefringence and stress in concentrated polymer solutions Trans. Faraday Soc. 52 (1956) 120

    Google Scholar 

  6. Green, M. S.; Tobolsky, A. V.: A new approach to the theory of relaxing polymeric media. J. Chem. Phys. 14 (1948) 80

    Google Scholar 

  7. Lodge, A. S.: Constitutive equations from molecular network theories for polymer solutions. Rheol. Acta 7 (1968) 379

    Google Scholar 

  8. Dietrich, J.; Ortmann, R.; Bonant, R.: The influence of finite extensibility of the chains on the orientation behavior of a polymer network. Colloid & Polymer Sci. 266 (1988) 299

    Google Scholar 

  9. Honerkamp, J.; Öttinger, H. C.: Schwinger-Dyson Approximation in elastic dumbbell models for flexible polymers. J. Non-Newtonian Fluid Mech. 21 (1986) 157

    Google Scholar 

  10. Honerkamp, J.; Öttinger, H. C.: Nonlinear force and tensorial mobility in a kinetic theory for polymer liquids, J. Chem. Phys. 84 (1986) 7028

    Google Scholar 

  11. Biller, P. Petruccione, F.; Honerkamp, J.; Öttinger, H. C.: Nonlinear dumbbell model for flexible polymers: Dynamical phenomena. J. Non-Newtonian Fluid Mech. 22 (1987) 309–324

    Google Scholar 

  12. Yamamoto, M.: The viscoelastic properties of network structure I. General Formalism. J. Phys. Soc. Japan 11 (1956) 413

    Google Scholar 

  13. Yamamoto, M.: The viscoelastic properties of network structure II. Structural Viscosity. J. Phys. Soc. Japan 12 (1957) 1148

    Google Scholar 

  14. Yamamoto, M.: The viscoelastic properties of network structure III. Normal stress effect (Weissenberg Effect). J. Phys. Soc. Japan 13 (1958) 1200

    Google Scholar 

  15. Wiegel, F. W.: A network model for viscoelastic fluids. Phys. 42 (1969) 156

    Google Scholar 

  16. Wiegel, F. W.; Bats, F. Th. de: Rheological properties of a network model for macromolecular fluids. Physica 43 (1969) 33

    Google Scholar 

  17. Petruccione, F.; Biller, P.: A numerical stochastic approach to network theories of polymeric liquids. J. Chem. Phys. 89 (1988) 577

    Google Scholar 

  18. Petruccione, F.; Biller, P.: Rheological properties of network models with configuration dependent creation and loss rates. Rheol. Acta 27 (1988) 557

    Google Scholar 

  19. Gardiner, C. W.: Handbook of stochastic methods. 2nd ed. (Springer, Berlin, 1985)

    Google Scholar 

  20. Greiner, A.; Strittmatter, W.; Honerkamp, J.: Numerical integration of stochastic differential equations. J. Stat. Phys. 51 (1988) 95

    Google Scholar 

  21. Meissner, J.: Dehnungsverhalten von Polyäthylen-Schmelzen. Rheol. Acta 10 (1971) 230

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petruccione, F. An empirical approach to non-Gaussian polymer network theories. Continuum Mech. Thermodyn 1, 97–111 (1989). https://doi.org/10.1007/BF01141996

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01141996

Keywords

Navigation