Skip to main content
Log in

Iron metabolism: The low-molecular-mass iron pool

  • Mini-review
  • Published:
Biology of Metals Aims and scope Submit manuscript

Summary

This review examines various aspects of iron metabolism in mammalian and bacterial cells which support the hypothesis of the existence and the biological significance of an intracellular pool of low-molecular mass iron complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aisen P (1989) Physical biochemistry of transferrin: update 1984–1988. In: Loehr TM (ed) Iron carriers and iron proteins. VCH Publishers, Weinheim, pp 353–371

    Google Scholar 

  • Bagg A, Neilands JB (1987) Ferric uptake regulation protein acts as a repressor, employing iron(II) as a cofactor to bind the operator of an iron transport operon inEscherichia coli. Biochemistry 26:5471–5477

    PubMed  Google Scholar 

  • Biemond P, Swaak AJG, Van Eijk HG, Koster JF (1988) Superoxide-dependent iron release from ferritin in inflammatory diseases. Free Rad Biol Med 4:185–198

    PubMed  Google Scholar 

  • Bolann BJ, Ulvik RJ (1990) On the limited ability of superoxide to release iron from ferritin. Eur J Biochem 193:899–904

    PubMed  Google Scholar 

  • Crichton RR (1984) Iron uptake and utilization by mammalian cells II. Intracellular iron utilization. Trends Biochem Sci 9:283–286

    Google Scholar 

  • Crichton RR, Charloteaux-Wauters M (1987) Iron transport and storage. Eur J Biochem 164:485–506

    PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Clarendon Press, Oxford

    Google Scholar 

  • Harrisson PM, Lilley TH (1989) Ferritin. In: Loehr TM (ed) Iron carriers and iron proteins. VCH Publishers, Weinheim, pp 123–238

    Google Scholar 

  • Jacob A (1977) Low molecular weight intracellular iron transport compounds. Blood 50:433

    PubMed  Google Scholar 

  • Rouault TA, Tang CK, Kaptain S, Burgess WH, Haile DJ, Samaniego F, McBride OW, Harford JB, Klausner RD (1990) Cloning of the cDNA encoding an RNA regulatory protein — the human iron-responsive element-binding protein. Proc Natl Acad Sci USA 87:7958–7962

    PubMed  Google Scholar 

  • Sun IL, Navas P, Crane FL, Morre DJ, Low DH (1987) NADH-transferrin reductase in liver plasma membrane. J Biol Chem 262:15915–15921

    PubMed  Google Scholar 

  • Theil EC (1990) Regulation of ferritin and transferrin receptor in mRNAs. J Biol Chem 265:4771–4774

    PubMed  Google Scholar 

  • Thorstensen K, Romslo I (1990) The role of transferrin in the mechanism of cellular iron uptake. Biochem J 271:l-10

    Google Scholar 

  • Weaver J, Pollack S (1989) Low-M r iron isolated from guinea pig reticulocytes as AMP-Fe and ATP-Fe complexes. Biochem J 261:787–792

    PubMed  Google Scholar 

  • Weaver J, Zhan H, Pollack S (1990) Mitochondria have Fe(III) receptors. Biochem J 265:415–419

    PubMed  Google Scholar 

  • Williams RJP (1982) Free manganese(II) and iron(II) cations can act as intracellular cell control. FEBS Lett 140:3–10

    PubMed  Google Scholar 

  • Winkelman G, Van Der Helm D, Neilands JB (eds) (1987) Iron transport in microbes, plants and animals. VCH Publishers, Weinheim

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fontecave, M., Pierre, J.L. Iron metabolism: The low-molecular-mass iron pool. Biol Metals 4, 133–135 (1991). https://doi.org/10.1007/BF01141302

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01141302

Key words

Navigation