Skip to main content
Log in

Fracture mechanics approach to evaluation of strength in sintered silicon nitride

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The evaluation of strength of ceramics is an important problem in their application to engineering components. Although fracture initiating from inherent flaws in ceramics is supposed to be analyzed through linear elastic fracture mechanics, the applicability of a plane-strain fracture toughness criterion is in dispute.

In this investigation, fracture tests for two grades of sintered silicon nitride were conducted under plane-bending and ring-compression. As the size of inherent flaw observed at the fracture origin was larger, the critical stress intensity factor for the flaw increased and then almost coincided with the fracture toughness. This suggests that ordinary fracture mechanics data should not always be applied directly for predicting the strength of engineering ceramic components. The flaw-size effect was discussed from the point of the applicability of fracture mechanics and the relation with material microstructure.

Résumé

L'évaluation de la résistance des céramiques est un problème important pour leur application à des composants mécaniques. Bien que l'amorçage d'une fissure dans une céramique au départ de défauts inhérents soit normalement analysable par la mécanique de rupture linéaire et élastique, on n'est pas d'accord sur la pertinence d'un critère de ténacité à la rupture en état plan de déformation.

Dans cette recherche, des essais de rupture de deux nuances de nitrure de silicium frittées ont été exécutés en flexion plane et en compression d'anneaux. On a observé que lorsque augmente la taille d'un défaut initial repérable comme origine de la rupture, le facteur critique d'intensité de contrainte pour le défaut considéré augmente et coïncide presque avec la ténacité à la rupture. Ceci suggère que les données habituelles de la mécanique de la rupture ne peuvent pas être toujours appliquées directement pour prédire la résistance de composants mécaniques en céramique.

L'effet de la taille du défaut est discuté des points de vue de l'application possible de la mécanique de rupture et de la relation avec la microstructure du matériau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.T. Shih and J. Opoku,Engineering Fracture Mechanics 12 (1979) 479–498.

    Google Scholar 

  2. A.G. Evans and R.W. Davidge,Journal of Materials Science 5 (1970) 314–325.

    Google Scholar 

  3. J.L. Henshall, D.J. Rowcliffe and J.W. Edington,Journal of Materials Science 9 (1974) 1559–1561.

    Google Scholar 

  4. G.K. Bansal,Philosophical Magazine 35 (1977) 935–944.

    Google Scholar 

  5. J.J. Mecholsky, Jr., S.W. Freiman and R.W. Rice,Journal of the American Ceramic Society 60 (1977) 114–117.

    Google Scholar 

  6. G.K. Bansal and W.H. Duckworth,Fracture Mechanics of Ceramics 3 (1978) 189–204.

    Google Scholar 

  7. M. Kawai and H. Abe,Reports of Research Laboratory of Asahi Glass Co. Ltd. 32 (1982) 25–36.

    Google Scholar 

  8. T. Yamada, T. Hoshide and H. Furuya,Journal of the Society of Materials Science, Japan 33 (1984) 28–33.

    Google Scholar 

  9. E.A. Ripperger and N. Davids,Transactions of American Society of Civil Engineers 112 (1947) 619–635.

    Google Scholar 

  10. R.K. Govila, K.R. Kinsman and P. Beardmore,Journal of Material Science 13 (1978) 2081–2091; 14 (1979) 1095–1102.

    Google Scholar 

  11. I. Takahashi, K. Nakakado and H. Miyata,Preprint of Japan Society of Mechanical Engineers, October Meeting, No. 830-10 (1983) 31–33.

  12. R.R. Wills and J.M. Wimmer,Journal of the American Ceramic Society 59 (1976) 437–440.

    Google Scholar 

  13. J.J. Petrovic and L.A. Jacobson,Journal of the American Ceramic Society 59 (1976) 34–37.

    Google Scholar 

  14. P.N. Randall,ASTM STP 410 (1966) 88–126.

    Google Scholar 

  15. J.P. Singh, Anil V. Virkar, D.K. Shetty and R.S. Gordon,Journal of the American Ceramic Society 62 (1979) 179–183.

    Google Scholar 

  16. R.W. Rice, S.W. Freiman and J.J. Mecholsky, Jr.,Journal of the American Ceramic Society 63 (1980) 129–136.

    Google Scholar 

  17. R.W. Rice, S.W. Freiman and P.F. Becher,Journal of the American Ceramic Society 64 (1981) 345–350.

    Google Scholar 

  18. D. Broek, inElementary Engineering Fracture Mechanics, Noordhoff International Publishing, Leyden (1974) 166–169.

    Google Scholar 

  19. R.C. Shah and A.S. Kobayashi,ASTM STP 513 (1972) 3–21.

    Google Scholar 

  20. K. Tanaka, T. Hoshide and O. Maekawa,Engineering Fracture Mechanics 16 (1982) 207–220.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoshide, T., Furuya, H., Nagase, Y. et al. Fracture mechanics approach to evaluation of strength in sintered silicon nitride. Int J Fract 26, 229–239 (1984). https://doi.org/10.1007/BF01140630

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01140630

Keywords

Navigation