Skip to main content
Log in

Theoretical and experimental considerations on the thermal shock resistance of sintered glasses and ceramics using modelled microstructure-property correlations

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The thermal shock resistance of brittle materials such as glass and ceramics is one of their weaknesses. Pores and other incorporated second phases in these materials alter these properties which are decisive for thermal shock behaviour, and may therefore increase this behaviour in a precalculable manner. It has been theoretically demonstrated when and why porosity leads to an improvement in thermal shock resistance. The thermal shock resistance for porous borosilicate sintered glass and porous eutectic calcium titanate ceramic have been calculated and compared to experimental values. The results confirm that low porosities lead to an improvement in thermal shock resistance, that the thermal shock resistance has a maximum at a certain porosity, and that above certain porosities, the presence of pores deteriorates the thermal shock resistance. If porous materials are considered as a special case of composite materials, then relations valid for porous materials can be transferred to composite materials and vice versa (“composite concept”). This has been investigated using the examples of borosilicate sintered glass with incorporated antimony particles and eutectic calcium titanate ceramic with incorporated paladium particles. In the case of the glass-antimony composite material, improvements in thermal shock resistance of about 15% with 10 vol % antimony incorporation, were calculated and confirmed experimentally, while for calcium titanate-palladium composite materials, a 15% improvement in thermal shock resistance was already achieved with about 5 vol % metallic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Winkelmann andO. Schott,Ann. Phys. Chemie 51 (1894) 730.

    Google Scholar 

  2. W. D. Kingery,J. Am. Ceram. Soc. 38 (1955) 3.

    Google Scholar 

  3. D. P. H. Hasselmann,ibid. 50 (1967) 454.

    Google Scholar 

  4. T. Haase,Silikattechnik 1 (1950) 5.

    Google Scholar 

  5. Idem, Tonind. Z 79 (1955) 37.

    Google Scholar 

  6. F. Klasse andA. Heinz,ibid. 79 (1955) 296.

    Google Scholar 

  7. F. H. Norton,J. Am. Ceram. Soc. 8 (1925) 29.

    Google Scholar 

  8. K. Endell andW. Steeger,Glastech. Ber. 4 (1926/27) 43.

    Google Scholar 

  9. K. Endell,Ber Dtsch. Keram. Ges. 13 (1932) 97.

    Google Scholar 

  10. W. R. Buessem,Sprechsaal 93 (1960) 137.

    Google Scholar 

  11. D. P. H. Hasselmann,J. Am. Ceram. Soc,46 (1963) 535.

    Google Scholar 

  12. Idem, Int. J. Fract. Mech. 7 (1971) 157.

    Google Scholar 

  13. S. S. Manson andR. W. Smith,Trans. ASME 78 (1956) 533.

    Google Scholar 

  14. S. Timoshenko andY. N. Goodier, “Theory of Elasticity” (McGraw-Hill, New York, 1951).

    Google Scholar 

  15. U. Jauch,Ber. Kernforsch. Karlsruhe KfK 4469 (1988) 1.

    Google Scholar 

  16. L. E. Thiess,Sprechsaal Keramik, Glas, Email 30 (1932) 549.

    Google Scholar 

  17. R. L. Coble andW. D. Kingery,J. Am. Ceram. Soc. 38 (1955) 33.

    Google Scholar 

  18. H. Salmang andH. Scholze, “Keramik”, Vol. 6, part I (Springer, Berlin-Heidelberg-New York, 1982) p. 253.

    Google Scholar 

  19. U. Jauch, Dissertation Rheinisch-Westfälische Technische, Hochschule Aachen, Fachbereich 5 (1988).

  20. A. R. Boccaccini andG. Ondracek, in “Werkstoffkunde-Beiträge zu den Grundlagen and zur interdisziplinären Anwendung”, edited by P. Mayr, O. Vöhringer and H. Wohlfarty (DGM-Info-verlag, Oberursel, 1991) p. 481.

    Google Scholar 

  21. M. Arnold, A. R. Boccaccini andG. Ondracek,J. Mater. Sci. (1995) accepted.

  22. P. Boch andJ. C. Glandus,Interceram. 3 (1983) 33.

    Google Scholar 

  23. R. Rice, in “Treatise on Materials Science and Technology”, Vol. 11, edited by D. McCrone (Academic Press, New York, 1977) pp. 199–381.

    Google Scholar 

  24. H. Banno,Am. Ceram. Soc. Bull. 66 (1987) 1332.

    Google Scholar 

  25. L. F. Nielsen,Mater. Sci. Eng. 52 (1982) 39.

    Google Scholar 

  26. N. Ramakrishnan, V. S. Arunachalam,J. Mater. Sci. 25 (1990) 3930.

    Google Scholar 

  27. E. A. Dean,J. Am. Ceram. Soc. 66 (1983) 847.

    Google Scholar 

  28. G. Ondracek, “Werkstoffkunde”, 3rd Edn (Expert, Ehningen, 1992).

    Google Scholar 

  29. P. Mazilu andG. Ondracek, in “Thermal Effects in Fracture of Multiphase Materials”, Proceedings of Euromechanics Colloquium 255, edited by K. Herrmann and Z. Olesiak (Springer, 1989) p. 214.

  30. A. R. Boccaccini, P. Mazilu, G. Ondracek andD. Windelberg,J. Mech. Behav. Mater. (1993) 119.

  31. G. Ondracek,Rev. Powd. Met. Phys. Ceram. 3 (1987) 205.

    Google Scholar 

  32. Idem, in “Technische Keramik”, edited by B. Wielage and G. Willmann (Vulkan, Essen, 1988) p. 182.

    Google Scholar 

  33. Idem, in “Interfaces in Materials”, edited by D. Deruyterre and L. Froyen Koninlijke Academie voor Wetenschappen, Letteren en schone Kunsten van Belgie, Palais der Academien, Brussels (1989) p. 111.

    Google Scholar 

  34. Idem, Z. Werkstoff. 8-7 (1977) 240.

    Google Scholar 

  35. Idem, ibid.,9 (1978) 31.

    Google Scholar 

  36. A. R. Boccaccini, Dissertation Rheinisch-Westfälische Technische Hochschule Aachen, Fachbereich 5 (1994).

  37. A. R. Boccaccini, G. Ondracek andK. Winkler, in “66th Glastechnische Tagung”, DGG, Kurzreferate, Fulda (1992) p. 51.

    Google Scholar 

  38. J. B. Walsh, W. F. Brace andA. W. England,J. Am. Ceram. Soc. 48 (1965) 605.

    Google Scholar 

  39. M. Kuipers,Appl. Sci. Res. (A) 13 (1964) 138.

    Google Scholar 

  40. A. R. Boccaccini andG. Ondracek,Ceram. Acta 5 (1993) 61.

    Google Scholar 

  41. S. Nazare andG. Ondracek,Z. Werkstoff. 9 (1978) 140.

    Google Scholar 

  42. U. Jauch andG. Ondracek,ibid. 17 (1986) 316.

    Google Scholar 

  43. R. Rogier andF. Pernot,J. Mater. Sci. Mater. Med. 2 (1991) 153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, M., Boccaccini, A.R. & Ondracek, G. Theoretical and experimental considerations on the thermal shock resistance of sintered glasses and ceramics using modelled microstructure-property correlations. J Mater Sci 31, 463–469 (1996). https://doi.org/10.1007/BF01139165

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01139165

Keywords

Navigation