Skip to main content
Log in

Frequency domain models of the EEG

  • Published:
Brain Topography Aims and scope Submit manuscript

Summary

The structure of the normal resting EEG crosspectrum Svv(ω) is analyzed using complex multivariate statistics. Exploratory data analysis with Principal Component Analysis (PCA) is followed by hypothesis testing and computer simulations related to possible neural generators. The Svv(ω) of 211 normal individuals (ages 5 to 97) may be decomposed into two types of processes: the ξ process with spatial isotropicity reflecting diffuse, correlated cortical generators with radial symmetry, and processes that seem to be generated by more spatially concentrated, correlated sources. The latter are reflected as spectral peaks such as the process. The eigenvectors of the ξ process are the Spherical Harmonic Functions which explains the recurring pattern of maps characteristic of the spatial PCA of qEEG data. A new method for estimating sources in the frequency domain which fits dipoles to the whole crosspectrum is applied to explain the characteristics of the localized sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez, A., Pascual, R. and Valdes, P. Spatiotemporal properties of the a rhythm. In: E.R. John (Ed.), Machinery of the mind. Birkhauser, Boston-Basel-Berlin, 1990, 59–90.

    Google Scholar 

  • Basar, E., Basar-Eroglu, C., Roschke, J. and Schult, J. Strange attractors EEG as sign of cognitive function. In: E.R. John (Ed.), Machinery of The Mind. Birkhauser, Boston-Basel-Berlin, 1990, 91–114.

    Google Scholar 

  • Brillinger, R.D. Time Series: Data Analysis and Theory (Expanded Edition). Holt, Rinehart and Winston, Inc., New York, 1981.

    Google Scholar 

  • Burg, J.P., Luenberger, D.G. and Wenger, D.L. Estimation of structured covariance matrices. Proc. IEEE, 1982, 70: 963–974.

    Google Scholar 

  • Chapman, R.M., Ilmoniemi, R.J., Barbanera, S. and Romani, G.L. Selective localization of alpha brain activity with neuromagnetic measurements. Electoenceph. clin. Neurophysiol., 1984, 58: 569–572.

    Google Scholar 

  • Duffy, F.H., Iyer, V.G., and Surwillo, W.W. Clinical Electroencephalography and Topographic Brain Mapping. Technology and Practice. Springer-Verlag, New York, 1989.

    Google Scholar 

  • Duffy, F.H., Jones, K., Bartels, P., Albert, M., McAnulty, G.B. and Als, H. Quantitative neurophysiology with mapping: statistical inference, exploratory and confirmatory data analysis. Brain Topography, 1990, 3(1): 3–12.

    Google Scholar 

  • Flury, B. Common Principal Components and Related Multivariate Models. John Wiley & Sons, New York, 1988.

    Google Scholar 

  • Gersch, W. Non-stationary multichannel time series analysis. In A.S. Gevins and A Remond (Eds.), Handbook of Electroncephalography and Clinical Neurophysiology. Revised series Elsevier New York, 1987, Vol 1, 261–293.

  • Gonzalez, S.L., Grave de Peralta, R., Biscay, R., Jimenez, J.C., Pascual, R.D., Lemagne, J. and Valdes, P. Projective methods for the magnetic direct problem. In: S.J. Williamson, M. Hoke, G. Stroink and M. Kotani (Eds.), Advances in Biomagnetism. Plenum Press, New York and London, 1989, 615–618.

    Google Scholar 

  • Grave de Peralta, R., Valdes, P., and Pascual, R. Source localization of the EEG spectrum. Presented at the Second International congress on Brain Electromagnetic Topography. Toronto, Canada, 1991.

  • Hannan, E.J. Multiple time series. John Wiley and Sons, Inc., New York, 1970.

    Google Scholar 

  • Harner, R.N. Singular value descomposition: a general linear model for analysis of multivariate structure in the electroencephalogram. Brain Topography, 1990, 3(1): 43–47.

    Google Scholar 

  • Hernandez, J., Valdes, P. and Pascual, R. A general scale factor for EEG Topography. Presented at the Second International Congress on Brain Electromagnetic Topography. Toronto, Canada, 1991.

  • Herrmann, W.M., Roehmel, J., Streitberg, B. and Willmann, J. Example for applying the COMSTAT algorithm to electroencephalogram data to describe variance sources. Neuropsychobiology, 1983, 10: 164–172.

    Google Scholar 

  • Ilmoniemi, R.J., Williamson, S.J. and Hostetler, W.E. New method for study of spontaneous brain activity. In: K. Atsumi, M. Kotani, S. Ueno, T. Katila and S.J. Williamson (Eds.), Biomagnetism '87, Tokyo Denki University Press, 1988, 182–185.

  • Ingber, L. and Nunez, P.L. Multiple scales of statistical physics of the neocortex: applications to electroencephalography. Mathl Comput. Modeling, 1990, 13: 83–95.

    Google Scholar 

  • John, E.R., Prichep, P. and Easton, P. Normative data banks and neurometrics. Basic concepts, methods and results of norm constructions. In: A.S. Gevins and A. Remond (Eds.), Handbook of Electroencephalography and Clinical Neurophysiology, vol. 1. Elsevier Science Publishers B. V., Amsterdam, New York, Oxford, 1987, 449–495.

    Google Scholar 

  • Katznelson, R.D. Deterministic and Stochastic Field Theoretic Model in the Neurophysics of EEG. Ph.D Thesis Desertation, University of California at San Diego, 1982.

  • Lehmann, D. Brain electric micro-estate and cognition: the atoms of thought. In: E.R. John (Ed.), Machinery of the Mind. Birkhauser, Boston-Basel-Berlin, 1990a, 209–224.

    Google Scholar 

  • Lehmann, D. and Michel, C.M. Intracerebral dipole source localization for FFT power maps. Electroenceph. clin. Neurophysiol., 1990, 76: 271–276.

    Google Scholar 

  • Lopes da Silva, F.H. Dynamics of EEGs as signals of neural populations: models and theoretical considerations. In: E. Niedermeyer and F.H Lopes da Silva (Eds.), Electroencephalography: Basic principles, clinical applications and related fields, Urban & Schwarzenberg, Baltimore-Munich, 1987, 15–28.

    Google Scholar 

  • Lopes da Silva, F.H. and Van Rotterdam, A., Barts, P., Van Heusden, E. and Burr, W. Models of neuronal population. The basis mechanisms of rhythmicity. In: D. Swaab and M.A. Corner (Eds.), Progress in Brain Research, 1976, Elsevier, Amsterdam, 281–308.

    Google Scholar 

  • Lopes da Silva, F.H. and Spekreijse, H. Localization of brain sources of visually evoked responses: using single and multiple dipoles. An overview of different approaches, 1991 (in press).

  • Lumeau, B., Rondouin, G. and Clergeot, H. High resolution methods: an approach to the localization of generators relative to Evoked Potentials. Electroenceph. clin. Neurophysiol. Supplement, 1990, 75: 586–587.

    Google Scholar 

  • Lutkenhoner, B. Frequency-domain localization of intracerebral dipole sources. Electroenceph. clin. Nuerophysiol., 1992, 82: 112–118.

    Google Scholar 

  • Mocks, J. The influence of latency variations in principal component analysis of event related potentials. Psychophysiology, 1986, 23: 480–484.

    Google Scholar 

  • Mosher, J.C., Lewis, P.S., Leahy, R. and Manbir, S. Multiple diplole modeling of spatio-temporal MEG data. SPIE Proceedings Series. July 1990. Volume 1351.

  • de Munck, J.C. Random dipoles as a model for spontaneous EEG and MEG activity. In: S.J. Williamson et al. (Eds.), Advances in Biomagnetism, Plenum Press, New York, 1989, 595–598.

    Google Scholar 

  • Nunez, P. Electrical Fields of the Brain: the Neurophysics of EEG. Oxford Univ. Press, New York, 1981.

    Google Scholar 

  • Nunez, P.L. Generation of human EEG by a combination of long and short range neocortical interactions. Brain Topography, 1989, 1: 199–215.

    Google Scholar 

  • Pascual, R., Valdes, P. and Alvarez, A. Multivariate spectral modelling of the EEG: the xa model. Neuroscience Branch, Technical Report No. NC-001, Havana, National Center for Scientific Research, 1985.

    Google Scholar 

  • Pascual, R.D., Valdes, P.A. and Alvarez, A. A parametric model for multichannel EEG spectra. Int. J. Neurosc., 1988, 40: 89–99.

    Google Scholar 

  • Scherg, M. and von Cramon, D. Dipole source potentials of the auditory cortex in normal subjects and in patients with temporal lobe lesion. In: F. Grandori, M. Hoke and G.L. Romani (Eds.), Auditory Evoked Magnetic Fields and Electric Potentials. Karger, Basel, 1990, 165–193.

    Google Scholar 

  • Silberstein, R.B., Cadusch, P.J. and Schier, M.A. Volume conduction effects on spatial principal components analysis of scalp recorded brain electrical activity. Brain Topography, 1990, 3(1): 273–274.

    Google Scholar 

  • Siotani, M., Takesi, H. and Yasunori, F. Modern Multivariate Statistical Analysis: A Graduate Course and Handbook. American Sciences Press, Inc., Columbus, 1983.

    Google Scholar 

  • Skrandies, W. Global field power and topography similarity. Brain Topography, 1990, 3(1): 137–141.

    Google Scholar 

  • Stoica, Petre and Sharman, K.C. Maximum Likelihood Methods for Direction-of-Arrival Estimation. IEEE Transactions on Acoustics, Speech and Signal Processing. 1990 38 (7): 1132–1143.

    Google Scholar 

  • Thatcher, R.W., Krause, P. and Hrybyk, M. Corticocortical association fibers and EEG coherence: a two compartmental model. Electroenceph. Clin. Neurophysiol., 1986, 64: 123–143.

    Google Scholar 

  • Valdes, P.A. Statistical Bases. In: T. Harmony (Ed.), Functional Neuroscience Vol. III. Neurometric assessment of brain dysfunction in neurological patients, Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1984, 141–254.

    Google Scholar 

  • Valdes, P.A., Pascual, R.D., Jimenez, J.C., Biscay, R., Carballo, J.A. and Gonzalez, S.L. Functionally based statistical methods for the analysis of the EEG and event related potentials. In: J.L. Willems, J.H. Bemmel and J. Michel (Eds.), Progress in computer assisted function analysis, North-Holland, Amsterdam-New York-Oxford, 1988, 91–96.

    Google Scholar 

  • Valdes, P. and Biscay, R. The statistical analysis of brain images. In: E.R. John (Ed.), Machinery of the Mind. Birkhauser, Boston-Basel-Berlin, 1990a, 405–434.

    Google Scholar 

  • Valdes, P., Biscay, R., Galan, L., Bosch, J., Szava, S., and Virues, T. High resolution spectral EEG norms for topography. Brain Topography, 1990b, 3(1): 281–282.

    Google Scholar 

  • Valdes, P., Riera, J., and Baez, O. The Genesis of EEG spatial principal components. Presented at the Second International Congress on Brain Electromagnetic Topography. Toronto, Canada, 1991.

  • Van Rotterdam, A., Lopes da Silva, F.H., van den Ende, J., Viergever, M.A. and Hermans, A.J. A model of the spatialtemporal charateristics of the alpha rhythm. Bull. Math. Biol., 1982, 44: 283–305.

    Google Scholar 

  • Williamson, S.J., Wang, J.Z. and Ilmoniemi, R.J. Methods for locating sources of human alpha activity. In: S.J. Williamson, M. Hoke, G. Stroink and M. Kotani (Eds.), Advances in Biomagnetism. Plenum Press, New York and London, 1989, 257–260.

    Google Scholar 

  • Zetterberg, L.H. Estimation of parameters for a linear difference equation with application to EEG analysis. Math. Biosciences, 1969, 5: 227–275.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors of this paper wish to thank Drs. R. Silberstein, F. Lopes da Silva, D. Lehmann, M. Scherg and a referee for valuable observations that improved the original manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valdés, P., Bosch, J., Grave, R. et al. Frequency domain models of the EEG. Brain Topogr 4, 309–319 (1992). https://doi.org/10.1007/BF01135568

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01135568

Key words

Navigation