Skip to main content
Log in

Fluid mixtures in narrow cylindrical pores: Computer simulation and theory

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

We discuss the simulation results of phase separation of a binary Lennard-Jones mixture in a cylindrical pore induced by a temperature quench. The liquid-vapor phase separation proceeds in two stages involving different time scales. First, following the growth of density fluctuations, mechanical equilibrium is rapidly established when the system splits into a dense and a dilute phase. Material equilibrium, however, is reached via the mutual diffusion of the two components and this proceeds on an appreciably longer time scale. We briefly address the rounding of a first-order phase transition in a cylinder. In particular, we explore the possibility of multiple domains of gas and liquid when the aspect ratio is very large. Finally, we introduce an extension of Tarazona's nonlocal density function to binary mixtures of arbitrary size. The new theory is successfully tested against simulations of an additive hard-sphere mixture against a hard wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.-H. Suh and J. M. D. MacElroy,Mol. Phys. 58:445 (1986).

    Google Scholar 

  2. M. Schoen, J. H. Cushman, D. J. Diestler, and C. L. Rhykerd, Jr.,J. Chem. Phys. 88:1394 (1988).

    Google Scholar 

  3. R. Evans, U. Marini Bettolo Marconi, and P. Tarazona,J. Chem. Phys. 84:2376 (1986).

    Google Scholar 

  4. B. K. Peterson, K. E. Gubbins, G. S. Heffelfinger, U. Marini Bettolo Marconi, and F. van Swol,J. Chem. Phys. 88:6487 (1988), and references therein.

    Google Scholar 

  5. P. C. Ball and R. Evans,Mol. Phys. 63:159 (1988).

    Google Scholar 

  6. G. S. Heffelfinger, F. van Swol, and K. E. Gubbins,J. Chem. Phys. 89:5202 (1988).

    Google Scholar 

  7. G. S. Heffelfinger, Z. Tan, K. E. Gubbins, U. Marini Bettolo Marconi, and F. van Swol,Mol. Simul. (in press) (1988), and references therein.

  8. U. Marini Bettolo Marconi and F. van Swol, Submitted for publication.

  9. P. Tarazona,Phys. Rev. A 31:672 (1985).

    Google Scholar 

  10. Z. Tan, U. Marini Bettolo Marconi, F. van Swol, and K. E. Gubbins,J. Chem. Phys. (in press) (1989).

  11. G. S. Heffelfinger, F. van Swol, and K. E. Gubbins,Mol. Phys. 61:1381 (1987).

    Google Scholar 

  12. D. Brown and J. H. R. Clarke,Mol. Phys. 512:1243 (1984).

    Google Scholar 

  13. Z. Tan, F. van Swol, and K. E. Gubbins,Mol. Phys. 62:1213 (1987).

    Google Scholar 

  14. B. Widom,J. Chem. Phys. 39:2808 (1963).

    Google Scholar 

  15. J. S. Rowlinson, and B. Widom,Molecular Theory of Capillarity (Oxford University Press, New York, 1982).

    Google Scholar 

  16. G. Jackson, J. S. Rowlinson, and F. van Swol,J. Phys. Chem. 91:4907 (1987).

    Google Scholar 

  17. P. Tarazona,Phys. Rev. A 61:1381 (1987).

    Google Scholar 

  18. V. Privman and M. E. Fisher,J. Stat. Phys. 33:385 (1983);J. Appl. Phys. 57:3327 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heffelfinger, G.S., Tan, Z., Gubbins, K.E. et al. Fluid mixtures in narrow cylindrical pores: Computer simulation and theory. Int J Thermophys 9, 1051–1060 (1988). https://doi.org/10.1007/BF01133272

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01133272

Key words

Navigation