Skip to main content
Log in

Studies of translocation catalysis

  • Symposium Papers
  • Published:
Bioscience Reports

Abstract

There is a symbiotic relationship between the evolution of fundamental theory and the winning of experimentally-based knowledge. The impact of the General Chemiosmotic Theory on our understanding of the nature of membrane transport processes is described and discussed. The history of experimental studies on transport catalysed by ionophore antibiotics and the membrane proteins of mitochondria and bacteria are used to illustrate the evolution of knowledge and theory. Recent experimental approaches to understanding the lactose-H+ symport protein ofEscherichia coli and other sugar porters are described to show that the lack of experimental knowledge of the three-dimensional structures of the proteins currently limits the development of theories about their molecular mechanism of translocation catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames, G. F.-L. (1990) Energy coupling in periplasmic permeases: the histidine permease as a model system.Res. Microbiol. 141:341–348.

    Google Scholar 

  • Aquila, H., Misra, D., Eulitz, M. and Klingenberg, M. (1982) Complete amino acid sequence of the ADP/ATP carrier from beef heart mitochondria.Hoppe-Seylers Z Physiol. Chemie 363:345–349.

    Google Scholar 

  • Aquila, H., Link, T. A. and Klingenberg, M. (1985) The uncoupling protein from brown fat mitochondria is related to the mitochondria ADP/ATP carrier. Analysis of sequence homologies and of folding of the protein in the membrane.EMBO J. 4:2369–2376.

    Google Scholar 

  • Aslandis, C., Schmid, K. and Schmitt, R. (1990). Nucleotide sequences and operon structure of plasmid-borne genes mediating uptake and utilisation of raffinose inEscherichia coli.J. Bacteriol. 171:6753–6763.

    Google Scholar 

  • Azzi, A., Chappell, J. B. and Robinson, B. H. (1967). Penetration of the mitochondrial membrane by glutamate and aspartate.Biochem. Biophys. Res. Commun. 29:148–152.

    Google Scholar 

  • Baldwin, S. A. (1990). Uniporters and anion antiporters.Curr. Opinion Cell Biol. 2:714–721.

    Google Scholar 

  • Baldwin, S. A. and Henderson, P. J. F. (1989). Homologies between sugar transporters from eukaryotes and prokaryotes.Annu. Rev. Physiol. 51:459–471.

    Google Scholar 

  • Bangham, A. D. (1983). Introduction—Liposomes: An historical perspective. In:Liposomes (Ostro, M. J. Ed.) Marcel Dekker, New York, pp. 1–13.

    Google Scholar 

  • Bangham, A. D., Standish, M. M. and Watkins, J. C. (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids.J. Mol. Biol. 13:238–252.

    Google Scholar 

  • Barsukov, I. G., Abdulaeva, G. V., Arseniev, A. S. and Bystrov, V. F. (1990) Sequence-specific1H-NMR assignment and conformation of proteolytic fragment 163-231 of bacteriorhodopsin.Eur. J. Biochem. 192:321–327.

    Google Scholar 

  • Beauclerk, A. D. D. and Smith, A. J. (1978) Transport of D-glucose and 3-O-methyl-D-glucose in the cyanobacteriaAphanocapsa 6714 andNostoc. Mac.Eur. J. Biochem. 82:187–197.

    Google Scholar 

  • Berger, E. A. and Heppel, L. A. (1974) Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases ofEscherichia coli.J. Biol. Chem. 249:7747–7755.

    Google Scholar 

  • Beyreuther, K., Bieseler, B., Ehring, R. and Müller-Hill, B. (1981) Identification of internal residues of lactose permease ofEscherichia coli by radiolabel sequencing of peptide mixtures. In:Methods in Protein Sequence Analysis (Elzina, M. Ed.) Humana Press, Clifton, New Jersey, pp. 139–148.

    Google Scholar 

  • Blakely, R. D., Berson, H. E., Fremeau, R. T., Caron, M. G., Peek, M. M., Prince, H. K. and Bradley, C. C. (1991) Cloning and expression of a functional serotonin transporter from rat brain.Nature 354:66–70.

    Google Scholar 

  • Bouillard, F., Weissenbach, J. and Ricquier, D. (1986) Complete cDNA-derived amino acid sequence of rat brown fat uncoupling protein.J. Biol. Chem. 261:1487–1490.

    Google Scholar 

  • Bradley, S. A., Tinsley, C. H., Muiry, J. A. R. and Henderson, P. J. F. (1987) Proton-linked L-fucose transport inEscherichia coli.Biochem. J. 248:495–500.

    Google Scholar 

  • Brooker, R. J. (1990a) Characterisation of the double mutant, Val-177/Asn-322, of the lactose permease.J. Biol. Chem. 265:4155–4160.

    Google Scholar 

  • Brooker, R. J. (1990b) The lactose permease ofEscherichia coli.Res. Microbiol. 141:309–315.

    Google Scholar 

  • Brooker, R. J., Myster, S. H., and Wilson, T. H. (1989) Characterization and sequencing of thelac Y54–41 “uncoupled” mutant of the lactose permease.J. Biol. Chem. 264:8135–8140.

    Google Scholar 

  • Brooker, R. J. and Wilson, T. H. (1986) Site specific alteration of cysteine 176 and cysteine 234 in the lactose carrier ofEscherichia coli.J. Biol. Chem. 261:11765–11769.

    Google Scholar 

  • Büchel, D. E., Gronenborn, B. and Müller-Hill, B. (1980) Sequence of the lactose permease gene.Nature 283:541–545.

    Google Scholar 

  • Bush, D. R. (1990) Electrogenicity, pH dependence, and stoichiometry of the proton-sucrose symport.Plant Physiol. 93:1590–1596.

    Google Scholar 

  • Cairns, M. T., McDonald, T. P., Horne, P., Henderson, P. J. F. and Baldwin, S. A. (1991) Cytochalasin B as a probe of protein structure and substrate recognition by the galactose/H+ transporter ofEscherichia coli.J. Biol. Chem. 266:8176–8183.

    Google Scholar 

  • Calamia, J. and Manoil, C. (1990)lac permease ofEscherichia coli: topology and sequence elements promoting membrane insertion.Proc. Natl. Acad. Sci. USA 87:4937–4941.

    Google Scholar 

  • Carrasco, N., Herzlinger, D., Mitchell, R., DeChiara, S., Danho, W., Gabriel, T. F. and Kaback, H. R. (1984). Intramolecular dislocation of the COOH terminus of thelac carrier protein in reconstituted proteoliposomes.Proc. Natl. Acad. Sci. USA,81:4672–4676.

    Google Scholar 

  • Carrasco, N., Herzlinger, D., Danho, W. and Kaback, H. R. (1986) Preparation of monoclonal antibodies and site-directed polyclonal antibodies against thelac permease ofEscherichia coli.Meth. Enzymol. 125:453–467.

    Google Scholar 

  • Carruthers, A. (1990) Facilitated diffusion of glucose.Physiol. Rev. 70:1135–1176.

    Google Scholar 

  • Carter, J. R. Jr., Cox, C. F. and Kennedy, E. P. (1968) Interaction of sugars with the membrane protein component of the lactose transport system ofEscherichia coli.Proc. Natl. Acad. Sci. USA 60:725–732.

    Google Scholar 

  • Chappell, J. B. (1968) Systems used for the transport of substrates into mitochondria.Brit. Med. Bull. 24:150–157.

    Google Scholar 

  • Chappell, J. B. and Crofts, A. R. (1966) Ion transport and reversible volume changes of isolated mitochondria. In:Regulation of Metabolic Processes in Mitochondria (BBA library vol. 7) (Tager, J. M., Papa, S., Qualiariello, E. and Slater, E. C. Eds.) Elsevier, Amsterdam, pp. 293–316.

    Google Scholar 

  • Chappell, J. B. and Haarhoff, K. N. (1967) In:Biochemistry of Mitochondria (Slater, E. C., Kanuiga, Z. and Wojtczak, L. Eds.) Academic Press, London, p. 75.

    Google Scholar 

  • Chappell, J. B., Henderson, P. J. F., McGivan, J. D. and Robinson, B. H. (1968) The effects of drugs on mitochondrial function. In:The Interaction of Drugs and Subcellular Components in Animal Cells (Campbell, P. A. Ed.) Churchill, London, pp. 71–94.

    Google Scholar 

  • Collins, J. C., Permuth, S. F. and Brooker, R. J. (1989) Isolation and characterization of lactose permease mutants with an enhanced recognition of maltose and diminished recognition of cellobiose.J. Biol. Chem. 264:14698–14703.

    Google Scholar 

  • Consler, T. G., Tsolas, O. and Kaback, H. R. (1991) Role of proline residues in the structure and function of a membrane transport protein.Biochemistry 30:1291–1298.

    Google Scholar 

  • Costello, M. J., Escaig, J., Matsushita, K., Viitanen, P. V., Menick, D. R. and Kaback, H. R. (1987) Purifiedlac permease and cytochromeo oxidase are functional as monomers.J. Biol. Chem. 262:17072–17082.

    Google Scholar 

  • Costello, M. J., Viitanen, P., Carrasco, N., Foster, D. L. and Kaback, H. R. (1984) Morphology of proteoliposomes reconstituted with purifiedlac carrier protein fromEscherichia coli.J. Biol. Chem. 259:15579–15586.

    Google Scholar 

  • Crimi, M. and Esposti, M. D. (1991) Structural predictions for membrane proteins: the dilemma of hydrophobicity scales.TIBS 16:119.

    Google Scholar 

  • Crofts, A. R., Deamer, D. W. and Packer, L. (1967) Mechanisms of light-induced structural changes in chloroplasts.Biochim. Biophys. Acta 131:97–118.

    Google Scholar 

  • Daruwalla, K. R., Paxton, A. T. and Henderson, P. J. F. (1981) Energization of the transport systems for arabinose and comparison with galactose transport inEscherichia coli.Biochem. J. 200:611–627.

    Google Scholar 

  • Davis, E. O. and Henderson, P. J. F. (1987) The cloning and DNA sequence of the genexylE for xylose-proton symport inE. coli K12.J. Biol. Chem. 262:13928–13932.

    Google Scholar 

  • Dean, D. A., Davidson, A. L. and Nikaido, H. (1990) The role of ATP as the energy source for maltose transport inEscherichia coli.Res. Microbiol. 141:348–352.

    Google Scholar 

  • Deisenhofer, J., Epp, O., Miki, K., Huber, R. and Michel, H. (1984) X-ray structure analysis of a membrane protein complex.J. Mol. Biol. 180:385–398.

    Google Scholar 

  • Dimroth, P. (1990) Mechanisms of sodium transport in bacteria.Phil. Trans. Roy. Soc. Lond. B. 326:465–477.

    Google Scholar 

  • Doolittle, R. F. (1981) Similar amino acid sequences: chance or common ancestry.Science 214:149–159.

    Google Scholar 

  • Doolittle, R. F. (Ed.) (1990) Molecular evolution: computer analysis of protein and nucleic acid sequences.Meth. Enzymol. Vol. 183 (Academic Press).

  • Dornmair, K., Corin, A. F., Wright, J. K. and Jähnig, F. (1985) The size of the lactose permease derived from rotational diffusion measurements.EMBO J. 4:3633–3638.

    Google Scholar 

  • Eckert, B. and Beck, C. F. (1989) Topology of the transposon Tn10-encoded tetracycline resistance protein within the inner membrane ofEscherichia coli.J. Biol. Chem. 264:11663–11670.

    Google Scholar 

  • Eddy, A. A. (1982) Mechanisms of solute transport in selected eukaryotic micro-organisms.Adv. Microb. Physiol. 23:1–78.

    Google Scholar 

  • Ehring, R., Beyreuther, K., Wright, J. K. and Overath, P. (1980).In vitro andin vivo products ofE. coli lactose permease gene are identical.Nature 283:537–540.

    Google Scholar 

  • Erni, B. (1990) Coupling of energy to glucose transport by the bacterial phosphotransferase system.Res. Microbiol. 141:360–364.

    Google Scholar 

  • Fersht, A. R., Leatherbarrow, R. L. and Wells, T. N. C. (1986) Binding energy and catalysis: a lesson from protein engineering of the tyrosyl-tRNA synthetase.TIBS,11:321–325.

    Google Scholar 

  • Ferreira, G. C., Pratt, R. D. and Pedersen, P. L. (1990) Mitochondrial proton/phosphate transporter.J. Biol. Chem. 265:21202–21206.

    Google Scholar 

  • Fonyo, A. and Bessman, S. P. (1966) The action of oligomycin and of para hydroxymercuribenzoate on mitochondrial respiration stimulated by ADP, arsenate and calcium.Biochem. Biophys. Res. Commun. 24:61–66.

    Google Scholar 

  • Foster, D. L., Boublik, M. and Kaback, H. R. (1983) Structure of thelac carrier protein ofEscherichia coli.J. Biol. Chem. 258:31–34.

    Google Scholar 

  • Foster, D. L., Garcia, M. L., Newman, M. J., Patel, L. and Kaback, H. R. (1982) Lactose-proton symport by purifiedlac carrier protein.Biochemistry 21:5634–5638.

    Google Scholar 

  • Fox, C. F. and Kennedy, E. P. (1965) Specific labelling and partial purification of the M protein, a component of the β-galactoside transport system ofEscherichia coli.Proc. Natl. Acad. Sci. USA 54:891–899.

    Google Scholar 

  • Gale, E. F. (1951) The assimilation of amino acids by bacteria. 10. Action of inhibitors on the accumulation of free glutamic acid inStaphylococcus aureus andStreptococcus faecalis.Biochem. J. 48:286–290.

    Google Scholar 

  • Gale, E. F. (1953) Assimilation of amino acids by gram-positive bacteria and some actions of antibiotics thereon.Adv. Protein Chem. Vol. VIII, pp. 285–391.

    Google Scholar 

  • Garcia, M. L., Patel, L., Padan, E. and Kaback, H. R. (1982) Mechanism of lactose transport inEscherichia coli membrane vesicles: evidence for the involvement of histidine residue(s) in the response of thelac carrier to the proton electrochemical gradient.Biochemistry 21:5800–5805.

    Google Scholar 

  • Garcia, M. L., Viitanen, P., Foster, D. L. and Kaback, H. R. (1983) Mechanism of lactose translocation in proteoliposomes reconstituted withlac carrier protein purified fromEscherichia coli. 1. Effect of pH and imposed membrane potential on efflux exchange, and counterflow.Biochemistry 22:2524–2531.

    Google Scholar 

  • Geever, R. F., Huiet, L., Baum, J. A., Tyler, B. M., Patel, V. B., Rutledge, B. J., Case, M. E. and Giles, N. H. (1989) DNA sequence, organization and regulation of theqa gene cluster ofNeurospora crassa.J. Mol. Biol. 207:15–34.

    Google Scholar 

  • Goldkorn, T., Rimon, G., Kempner, E. S. and Kaback, H. R. (1984) Functional molecular weight of thelac carrier fromEscherichia coli as studied by radiation inactivation analysis.Proc. Natl. Acad. Sci. USA 81:1021–1025.

    Google Scholar 

  • Gould, G. W. and Bell, G. I. (1990) Facilitative glucose transporters: an expanding family.TIBS 15;18–23.

    Google Scholar 

  • Greville, G. D. (1969) A scrutiny of Mitchell's chemiosmotic hypothesis of respiratory chain and photosynthetic phosphorylation.Curr. Top. Bioenerg. 3:1–78.

    Google Scholar 

  • Guggenheim, E. A. (1933)Modern Thermodynamics by the Methods of Willard Gibbs. Methuen, London.

    Google Scholar 

  • Hanada, K., Yamato, I. and Anraku, Y. (1985) Identification of proline carrier inEscherichia coli K12.FEBS Lett. 191:278–281.

    Google Scholar 

  • Harris, E. J. and Pressman, B. C. (1967) Obligate cation exchanges in red cells.Nature 216: 918–920.

    Google Scholar 

  • Harvey, F. R. (1911)J. Exp. Zool. 10:507–556.

    Google Scholar 

  • Hediger, M. A., Coady, M. J., Ikeda, T. S. and Wright, E. M. (1987) Expression cloning and cDNA sequencing of the Na+/glucose co-transporter.Nature 330:39–381.

    Google Scholar 

  • Hediger, M. A., Turk, E. and Wright, E. M. (1989) Homology of the human intestinal Na+/glucose andEscherichia coli Na+/proline cotransporters.Proc. Natl. Acad. Sci. USA 86:5748–5752.

    Google Scholar 

  • Henderson, P. J. F. (1971) Ion transport by energy-conserving biological membranes.Annu. Rev. Microbiol. 25:393–428.

    Google Scholar 

  • Henderson, P. J. F. (1974). Application of the chemiosmotic theory to the transport of lactose, D-galactose, and L-arabinose byEscherichia coli. In:Comparative Biochemistry and Physiology of Transport (Bolis, L., Bloch, K., Luria, S. E. and Lynen, F. Eds.) North Holland Publishing Company, Amsterdam, pp. 409–424.

    Google Scholar 

  • Henderson, P. J. F. (1986) Active transport of sugars intoEscherichia coli. In:Carbohydrate Metabolism in Cultured Cells (Morgan, M. J. Ed.) Plenum Press, New York and London. pp. 409–460.

    Google Scholar 

  • Henderson, P. J. F. (1990a) Proton-linked sugar transport systems in bacteria.J. Bioenerg. Biomemb. 22:525–569.

    Google Scholar 

  • Henderson, P. J. F. (1990b) The homologous glucose transport proteins of prokaryotes and eukaryotes.Res. Microbiol. 141:316–328.

    Google Scholar 

  • Henderson, P. J. F. (1991) Sugar transport proteins.Curr. Opinion Struct. Biology I:590–601.

    Google Scholar 

  • Henderson, P. J. F., McGivan, J. D. and Chappell, J. B. (1969) The action of certain antibiotics on mitochondrial, erythrocyte, and artifical phospholipid membranes: the role of induced proton permeability.Biochem. J. 111:521–535.

    Google Scholar 

  • Henderson, P. J. F., Giddens, R. A. and Jones-Mortimer, M. C. (1977) The transport of galactose, glucose and their molecular analogues byEscherichia coli K12.Biochem. J. 162:309–320.

    Google Scholar 

  • Henderson, P. J. F. and Maiden, M. C. J. (1990) Homologous sugar transport proteins inEscherichia coli and their relatives in both prokaryotes and eukaryotes.Phil. Trans. Roy. Soc. Lond. B326:391–410.

    Google Scholar 

  • Henderson, R. and Unwin, P. N. T. (1975) Three-dimensional model of purple membrane obtained by electron microscopy.Nature 257:28–32.

    Google Scholar 

  • Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E. and Downing, K. H. (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryomicroscopy.J. Mol. Biol. 213:899–929.

    Google Scholar 

  • Higgins, C. F. (1990) The role of ATP in binding-protein-dependent transport systems.Res. Microbiol. 141:353–360.

    Google Scholar 

  • Higgins, C. F., Hyde, S. C., Mimmack, M. M., Gildeadi, U., Gill, D. R. and Gallagher, M. P. (1990) Binding protein dependent transport systems.J. Bioenerg. Biomembr. 22:571–592.

    Google Scholar 

  • Hinkle, P. C., Hinkle, P. V. and Kaback, H. R. (1990) Information content of amino acid residues in putative helix VIII of thelac permease fromEscherichia coli.Biochemistry 29:10989–10994.

    Google Scholar 

  • Hirata, H., Altendorf, K. and Harold, F. M. (1974) Energy coupling in membrane vesicles ofEscherichia coli I. Accumulation of metabolites in response to a membrane potential.J. Biol. Chem. 249:2939–2945.

    Google Scholar 

  • Hutchins, V. M. (1978) Surcose and proton cotransport inRicinus cotyledons.Planta 138:229–235.

    Google Scholar 

  • Jackowski, S. and Alix, J. H. (1990) Cloning, sequence, and expression of the pantothenate permease (panF) gene ofEscherichia coli.J. Bacteriol. 172:3842–3848.

    Google Scholar 

  • Jackson, J. B., Crofts, A. R. and van Stedingk, L-V. (1968) Ion transport induced by light and antibiotics in chromatophores fromRhodospirillum rubrum.Eur. J. Biochem. 6:41–54.

    Google Scholar 

  • Jacobs, M. H. (1940) Some aspects of cell permeability to weak electrolytes.Cold Spring Harb. Symp. Quant. Biol. 8:30–39.

    Google Scholar 

  • Jacobson, G. R. (1990a) Coupling of energy to D-mannitol transport inEscherichia coli.Res. Microbiol. 141:365–368.

    Google Scholar 

  • Jacobson, G. R. (1990b) Forum Discussion.Res. Microbiol. 141:391–393.

    Google Scholar 

  • Jagendorf, A. T. (1967) Acid-base transitions and phosphorylation by chloroplasts.Fed. Proc. 26:1361–1369.

    Google Scholar 

  • Jagendorf, A. T. and Uribe, E. (1966) ATP formation caused by acid-base transition of spinach chloroplasts.Proc. Natl. Acad. Sci. USA 55:170–177.

    Google Scholar 

  • Jones, T. D. H. and Kennedy, E. P. (1969) Characterization of the membrane protein component of the lactose transport system ofEscherichia coli.J. Biol. Chem. 244:5981–5987.

    Google Scholar 

  • Jorgensen, P. L. and Andersen, J. P. (1988) Structural basis for E1-E2 conformational transitions in Na, K-pump and Ca-pump proteins.J. Memb. Biol. 103:95–120.

    Google Scholar 

  • Kaback, H. R. (1974) Transport in isolated bacterial membrane vesicles.Methods Enzymol. 31:698–709.

    Google Scholar 

  • Kaback, H. R. (1985) Proton electrochemical gradients and active transport: the saga oflac permease.Ann. N. Y. Acad. Sci. 456:291–304.

    Google Scholar 

  • Kaback, H. R. (1987) Use of site-directed mutagenesis to study the mechanism of a membrane transport protein.Biochemistry 26:2071–2076.

    Google Scholar 

  • Kaback, H. R. and Barnes, E. M. (1971) Mechanisms of active transport in isolated membrane vesicles.J. Biol. Chem. 246:5523–5531.

    Google Scholar 

  • Kaback, H. R., Bibi, E. and Roepe, P. D. (1990) β-Galactoside transport inE. coli: a functional dissection oflac permease.TIBS 15:309–314.

    Google Scholar 

  • Kaczorowski, G. J., LeBlanc, G. and Kaback, H. R. (1980) Specific labeling of thelac carrier protein in membrane vesicles ofEscherichia coli by a photoaffinity reagent.Proc. Natl. Acad. Sci. USA 77:6319–6323.

    Google Scholar 

  • Kane, S. E., Pastan, I. and Gottesman, M. M. (1990) Genetic basis of multidrug resistance of tumour cells.J. Bioenerg. Biomembr. 22:593–618.

    Google Scholar 

  • Kashket, E. R. and Wilson, T. H. (1973) Proton-coupled accumulation of galactoside inStreptococcus lactis 7962.Proc. Natl. Acad. Sci. USA 70:2866–2869.

    Google Scholar 

  • Kennedy, E. P. (1970) The lactose permease system ofEscherichia coli. In:The Lactose Operon (Beckwith, J. R. and Zipser, D. Eds.) Cold Spring Harbour, New York, pp. 49–92.

    Google Scholar 

  • Kilbourn, B. T., Dunitz, J. D., Pioda, L. A. R. and Simon, W. (1967) Structure of the K+ complex with nonactin, a macrotetrolide antibiotic possessing highly specific K+ transport properties.J. Mol. Biol. 30:559–563.

    Google Scholar 

  • King, S. C. and Wilson, T. H. (1989a) Galactoside-dependent proton transport by mutants of theEscherichia coli lactose carrier: substitution of tyrosine for histidine-322 and of leucine for serine-306.Biochim. Biophys. Acta 982:253–264.

    Google Scholar 

  • King, S. C. and Wilson, T. H. (1989b) Galactoside-dependent proton transport by mutants of theEscherichia coli lactose carrier. Replacement of histidine 322 by tyrosine or phenylalanine.J. Biol. Chem. 264:7390–7394.

    Google Scholar 

  • King, S. C. and Wilson, T. H. (1990a) Towards an understanding of the structural basis of ‘forbidden’ transport pathways in theEscherichia coli lactose carrier: mutations probing the energy barriers to coupled transport.Mol. Microbiol. 4:1433–1438.

    Google Scholar 

  • King, S. C. and Wilson, T. H. (1990b) Characterisation ofEscherichia coli lactose carrier mutants that transport protons without a cosubstrate. Probes for the energy barrier to uncoupled transport.J. Biol. Chem. 265:9645–9651.

    Google Scholar 

  • King, S. C., Hansen, C. L. and Wilson, T. H. (1990) The interaction between aspartic acid 237 and lysine 358 in the lactose carrier ofEscherichia coli.Biochim. Biophys. Acta 1062:177–186.

    Google Scholar 

  • Klingenberg, M. (1988) The mitochondrial carrier family involved in energy transduction. In:Molecular Basis of Biomembrane Transport (Palmieri, F. and Quagliariello, E. Eds.) Elsevier, pp. 141–153.

  • Klingenberg, M. (1990) Mechanism and evolution of the uncoupling protein of brown adipose tissue.TIBS 15:108–112.

    Google Scholar 

  • Klingenberg, M. and Pfaff, E. (1966) Structural and functional compartmentation in mitochondria. In:Regulation of Metabolic Processes in Mitochondria (BBA Library Vol. 7) (Tager, J. M., Papa, S., Quagliariello, E., and Slater, E. C. Eds.) Elsevier Publishing Co., Amsterdam, pp. 180–201.

    Google Scholar 

  • Komor, E. and Tanner, W. (1974) The hexose-proton symport system ofChlorella vulgaris.Eur. J. Biochem. 44:219–223.

    Google Scholar 

  • Konings, W. N. and Robillard, G. T. (1982) Physical mechanism for regulation of proton solute symport inEscherichia coli.Proc. Natl. Acad. Sci. USA 79:5480–5484.

    Google Scholar 

  • Kruckeberg, A. L. and Bisson, L. F. (1990) The HXT2 gene ofSaccharomyces cerevisiae is required for high-affinity glucose transport.Mol. Cell. Biol. 10:5903–5913.

    Google Scholar 

  • Kuhlbrandt, W. and Wang, D. N. (1991) Three-dimensional structure of plant light-harvesting complex determined by electron crystallography.Nature 350:130–134.

    Google Scholar 

  • Lam, V. M. S., Daruwalla, K. R., Henderson, P. J. F. and Jones-Mortimer, M. C. (1980) Proton-linked D-xylose transport inEscherichia coli.J. Bacteriol. 143:396–402.

    Google Scholar 

  • Lancaster, J. R. Jr., (1982) Mechanism of lactose-proton cotransport inEscherichia coli. Kinetic results in terms of the site exposure model.FEBS Lett. 150:9–18.

    Google Scholar 

  • Lardy, H. A., Graven, S. N. and Estrada-O, S. (1967) Specific induction and inhibition of cation and anion transport in mitochondria.Fed. Proc. 26:1355–1360.

    Google Scholar 

  • Leblanc, G., Pourcher, T. and Bassilana, M. (1989) The molecular biology of melibiose transport inEscherichia coli.Biochimie 71:969–979.

    Google Scholar 

  • Lengeler, J. W., Titgemeyer, F., Vogler, A. P. and Wöhrl, B. M. (1990) Structures and homologies of carbohydrate: phosphotransferase system (PTS) proteins.Phil. Trans. Roy. Soc. Lond. B326:489–504.

    Google Scholar 

  • Levitt, D. (1990) Gramicidin, VDAC, porin and perforin channels.Curr. Biol. 2:689–694.

    Google Scholar 

  • Li, J. and Tooth, P. (1987) Size and shape of theEscherichia coli. lactose permease measured in filamentous arrays.Biochemistry 26:4816–4823.

    Google Scholar 

  • Lodish, H. F. (1988) Multi-spanning membrane proteins: how accurate are the models?Trends in Biochem. Sci. 13:332–334.

    Google Scholar 

  • Lombardi, F. J. (1981) Lactose-H+(OH) transport system ofEscherichia coli. Multistate gated pore model based on half-sites stoichiometry for high-affinity substrate binding in a symmetrical dimer.Biochim. Biophys. Acta 649:661–679.

    Google Scholar 

  • Lu, Z. and Lin, E. C. C. (1989) The nucleotide sequence ofEscherichia coli genes for L-fucose dissimilation.Nucleic Acids Res. 17:4883–4884.

    Google Scholar 

  • Macpherson, A. J. S., Jones-Mortimer, M. C. J. and Henderson, P. J. F. (1981) Identification of the AraE transport protein ofEscherichia coli.Biochem. J. 196:269–283.

    Google Scholar 

  • Macpherson, A. J. S., Jones-Mortimer, M. C. J., Horne, P. and Henderson, P. J. F. (1982) Identification of the GalP galactose transport protein ofEscherichia coli.J. Biol. Chem. 258:4390–4396.

    Google Scholar 

  • Maiden, M. C. J., Davis, E. O., Baldwin, S. A., Moore, D. C. M. and Henderson, P. J. F. (1987) Mammalian and bacterial sugar transport proteins are homologousNature 325:641–643.

    Google Scholar 

  • Maiden, M. C. J., Jones-Mortimer, M. C. and Henderson, P. J. F. (1988) The cloning, DNA sequence and overexpression of the genearaE coding for arabinose-proton symport inEscherichia coli K12.J. Biol. Chem. 263:8003–8010.

    Google Scholar 

  • Maloney, P. C. (1990a) A consensus structure for membrane transport.Res. Microbiol. 141:374–383.

    Google Scholar 

  • Maloney, P. C. (1990b) Resolution and reconstitution of anion exchange reactions.Phil. Trans. Roy. Soc. Lond. B326:437–454.

    Google Scholar 

  • Manoil, C. (1990) Analysis of protein localisation by use of gene fusions with complementary properties.Proc. Natl. Acad. Sci. USA 87:4937–4941.

    Google Scholar 

  • Mayinger, P., Winkler, E. and Klingenberg, M. (1989) The ADP/ATP carrier from yeast (AAC-2) is uniquely suited for the assignment of the binding centre by photoaffinity labelling.FEBS Lett. 244:421–426.

    Google Scholar 

  • Menezes, M. E., Roepe, P. D. and Kaback, H. R. (1990) Design of a membrane transport protein for fluorescence spectroscopy.Proc. Natl. Acad. Sci. USA 87:1638–1642.

    Google Scholar 

  • Menick, D., Lee, J. A., Brooker, R. J., Wilson, T. H. and Kaback, H. R. (1987) Role of cysteine residues in thelac permease ofEscherichia coli.Biochemistry 26:1132–1136.

    Google Scholar 

  • Mieschendahl, M., Büchel, D. E., Bocklage, H. and Müller-Hill, B. (1981) Mutations in thelacY gene ofEscherichia coli define functional organisation of lactose permease.Proc. Natl. Acad. Sci. USA 78:7652–7656.

    Google Scholar 

  • Mitchell, P. (1949) The osmotic barrier in bacteria. In:The Nature of the Bacterial Surfaces (Miles, A. A. and Pirie, N. W. Eds.), Blackwell, Oxford, pp. 55–75.

    Google Scholar 

  • Mitchell, P. (1954) Transport of phosphate through an osmotic barrier.Symposia of the Society for Experimental Biology No. VIII, 254–261.

    Google Scholar 

  • Mitchell, P. (1956) Properties of biological membranes.Faraday Society Discussions 21:278–279, 282–283.

    Google Scholar 

  • Mitchell, P (1957) A general theory of membrane transport from studies of bacteria.Nature (Lond.)180:134–136.

    Google Scholar 

  • Mitchell, P. (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism.Nature 191:144–148.

    Google Scholar 

  • Mitchell, P. (1963) Molecule, group and electron transfer through natural membranes.Biochem. Soc. Symp. 22:142–169.

    Google Scholar 

  • Mitchell, P. (1966)Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Glynn Research Ltd, Bodmin.

    Google Scholar 

  • Mitchell, P. (1967) Active transport and ion accumulation. In:Comprehensive Biochemistry (Florkin, M. and Stotz, E. H. Eds.) Elsevier, Amsterdam, pp. 167–197.

    Google Scholar 

  • Mitchell, P. (1968)Chemiosmotic coupling and energy transduction. Glynn Research Ltd., Bodmin.

    Google Scholar 

  • Mitchell, P. (1970) Membranes of cells and organelles: morphology, transport and metabolism.Symp. Soc. Gen. Microbiol. 20:121–166.

    Google Scholar 

  • Mitchell, P. (1973) Performance and conservation of osmotic work by proton-coupled solute porter systems.Bioenergetics 4:63–91.

    Google Scholar 

  • Mitchell, P. (1977) Epilogue: from energetic abstraction to biochemical mechanism.Symp. Soc. Gen. Microbiol. 27:383–423.

    Google Scholar 

  • Mitchell, P. (1987) Realistic models of transport processes. In:Integration and Control of Metabolic Processes: Pure and Applied Aspects (Kon, O. L. et al., Eds.) ICSU and Cambridge University Press, Cambridge, pp. 231–245.

    Google Scholar 

  • Mitchell, P. (1990a) Osmochemistry of solute translocation.Res. Microbiol. 141:286–289.

    Google Scholar 

  • Mitchell, P. (1990b) Forum Discussion.Res. Microbiol. 141:384–385.

    Google Scholar 

  • Mitchell, P. and Moyle, J. (1956) Permeation mechanisms in bacterial membranes.Faraday Society Discussions 21:258–265.

    Google Scholar 

  • Mueckler, M. C., Caruso, C., Baldwin, S. A., Panico, M., Blench, I., Morris, H. R., Allard, W. J., Lienhard, G. E. and Lienhard, H. F. (1985) Sequence and structure of a human glucose transporter.Science 229:941–945.

    Google Scholar 

  • Muiry, J. A. R. (1988) The L-rhamnose and L-fucose transport systems ofEscherichia coli. Ph. D. Thesis. University of Cambridge.

  • Neal, R. J. and Chater, K. F. (1987) Nucleotide sequence analysis reveals similarities between proteins determining methylenomycin A resistance inStreptomyces and tetracycline resistance in eubacteria.Gene 58:229–241.

    Google Scholar 

  • Newman, M. J. and Wilson, T. H. (1980) Solubilization and reconstitution of the lactose transport system fromEscherichia coli.J. Biol. Chem. 255:10583–10586.

    Google Scholar 

  • Newman, M. J., Foster, D. L., Wilson, T. H. and Kaback, H. R. (1981) Purification and reconstitution of functional lactose carrier fromEscherichia coli.J. Biol. Chem. 256:11804–11808.

    Google Scholar 

  • Nicholls, D. G. (1982)Bioenergetics: An Introduction to the Chemiosmotic Theory. Academic Press, London.

    Google Scholar 

  • Overath, P., Weigel, U., Neuhaus, J.-M., Soppa, J., Seckler, R., Reide, I., Bocklage, H., Müller-Hill, B., Aichele, G. and Wright, J. K. (1987) Lactose permease ofEscherichia coli: Properties of mutants defective in substrate translocation.Proc. Natl. Acad. Sci. USA 84:5535–5539.

    Google Scholar 

  • Overath, P. and Wright, J. K. (1983) Lactose permease: a carrier on the move.Trends Biochem. Sci. 8:404–408.

    Google Scholar 

  • Pacholczyk, T., Blakely, R. D. and Amara, S. G. (1991) Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter.Nature 350:350–354.

    Google Scholar 

  • Padan, E., Patel, L. and Kaback, H. R. (1979) Effect of diethylpyrocarbonate on lactose/proton symport inEscherichia coli membrane vesicles.Proc. Natl. Acad. Sci. USA 76:6221–6225.

    Google Scholar 

  • Page, M. G. and Rosenbusch, J. P. (1988) Topography of lactose permease fromEscherichia coli.J. Biol. Chem. 263:15906–15914.

    Google Scholar 

  • Page, M. G., Rosenbusch, J. P. and Yamato, I. (1988) The effects of pH on proton sugar symport activity of the lactose permease purified fromEscherichia coli.J. Biol. Chem. 263:15897–15905.

    Google Scholar 

  • Palmieri, F., Bisaccia, F., Capobianco, L., Iacobazzi, V., Indiveri, C. and Zara, V. (1990) Structural and functional properties of mitochondrial anion carriers.Biochim. Biophys. Acta 1018: 147–150.

    Google Scholar 

  • Pattus, F. (1990) Membrane protein structure.Curr. Opinion Cell. Biol. 2:681–685.

    Google Scholar 

  • Poolman, B., Royer, T. J., Mainzer, S. E. and Schmidt, B. F. (1989) Lactose transport system of Streptococcus thermophilus.J. Bacteriol. 171:244–253.

    Google Scholar 

  • Pressman, B. C., Harris, E. J., Jagger, W. S. and Johnson, J. H. (1967) Antibiotic-mediated transport of alkali ions across lipid barriers.Proc. Natl. Acad. Sci. USA 58:1949.

    Google Scholar 

  • Pressman, B. C. (1976) Biological applications of ionophores.Annu. Rev. Biochem. 45:501–530.

    Google Scholar 

  • Quiocho, F. A. (1986) Carbohydrate binding proteins: tertiary structures and protein-sugar interactions.Annu. Rev. Biochem. 55:287–315.

    Google Scholar 

  • Quiocho, F. A. (1990) Atomic structures of periplasmic binding proteins and the high-affinity active transport systems in bacteria.Phil. Trans. Roy. Soc. Lond. B 326:341–351.

    Google Scholar 

  • Raboy, B. and Padan, E. (1978) Active transport of glucose and α-methyl-glucoside in the cyanobacteriumPlectonema boryanum.J. Biol. Chem. 253:3287–3291.

    Google Scholar 

  • Racker, E. (1979) Reconstitution of membrane processes.Meth. Enzymol. 55:699–711.

    Google Scholar 

  • Riccio, P., Aquila, H. and Klingenberg, M. (1975) Purification of the carboxy-atractylate binding protein from mitochondria.FEBS Lett. 56:133–138.

    Google Scholar 

  • Rickenberg, H. W., Cohen, G. N., Buttin, G. and Monod, J. (1956) La galactoside-permease d'Escherichia coli.Ann. Inst. Pasteur 91:829.

    Google Scholar 

  • Riordan, J. R., Rommens, J. M., Karem, B-S., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., Lok, S., Plavsic, N., Chou, J.-L., Drumm, M. L., Iannuzzi, M. C., Collins, F. S., Tsui, L.-C. (1989) Identification of the cystic fibrosis gene: cloning and characterisation of complementary DNA.Science 245:1066–1073.

    Google Scholar 

  • Roberts, R. B. and Roberts, I. Z. (1950) Potassium metabolism inEscherichia coli. III. Interrelationship of potassium and phosphorus metabolism.J. Cell. Comp. Physiol. 36:15.

    Google Scholar 

  • Robinson, B. H. and Chappell, J. B. (1967) The inhibition of malate, tricarboxylate and oxoglutarate entry into mitochondria by 2-n-butylmalonate.Biochem. Biophys. Res. Commun. 28:249–255.

    Google Scholar 

  • Robillard, G. T. and Konings, W. N. (1982) A hypothesis for the role of dithiol-disulfide interchange in solute transport and energy-transducing processes.Eur. J. Biochem. 127:597–604.

    Google Scholar 

  • Roepe, P. D. and Kaback, H. R. (1989) Site-directed mutagenesis of tyrosine residues in thelac permease ofEscherichia coli.Biochemistry 28:6127–6132.

    Google Scholar 

  • Roepe, P. and Kaback, H. R. (1990) Forum Discussion.Res. Microbiol. 141:385–387.

    Google Scholar 

  • Roepe, P. D., Consler, T. G., Menezes, M. E. and Kaback, H. R. (1990) The lac permease ofEscherichia coli: site-directed mutagenesis studies on the mechanism of β-galactoside/H+ symport.Res. Microbiol. 141:290–308.

    Google Scholar 

  • Rosen, B. P. and Kashket, E. R. (1978). Energetics of active transport. In:Bacterial Transport (Microbiology Series, Vol. 4) (Rosen, B. P. Ed.) Marcel Dekker, Inc., New York/Basel. pp. 559–620.

    Google Scholar 

  • Rosenberg, T. (1948) On accumulation and active transport in biological systems.Acta chem. scand. 2:14.

    Google Scholar 

  • Rouch, D. A., Cram, D. S., DiBerardino, D., Littlejohn, T. and Skurray, R. A. (1990) Efflux-mediated antiseptic resistance gene.Mol. Microbiol. 4:2051–2062.

    Google Scholar 

  • Rubin, R. A. and Levy, S. B. (1990) Interdomain hybrid tet proteins confer tetracycline resistance only when they are derived from closely related members of thetet gene family.J. Bacteriol. 172:2303–2312.

    Google Scholar 

  • Rubin, R. A., Levy, S. B., Henrikson, R. L. and Kézdy, F. J. (1990) Gene duplication in the evolution of the two complementing domains of Gram-negative bacterial tetracycline efflux proteins.Gene 87:7–13.

    Google Scholar 

  • Rudnick, G., Schuldiner, S. and Kaback, H. R. (1976) Equilibrium between two forms of thelac carrier protein in energised and non-energised membrane vesicles fromEscherichia coli.Biochemistry 15:5126–5131.

    Google Scholar 

  • Runswick, M. J., Powell, S. J., Nyren, P. and Walker, J. E. (1987) Sequence of the bovine mitochondrial phosphate carrier protein: structural relationship to ADP/ATP translocase and the brown fat mitochondria uncoupling protein.EMBO J. 6:1367–1373.

    Google Scholar 

  • Runswick, M. J., Walker, J. E., Bisaccia, F., Iacobazzi, V. and Palmieri, F. (1990). Sequence of the bovine 2-oxoglutarate/malate carrier protein: structural relationship to other mitochondrial transport proteins.Biochemistry 29:11033–11040.

    Google Scholar 

  • Saier, M. H., Jr., (1990) Evolution of permease diversity and energy-coupling mechanisms: an introduction.Res. Microbiol. 141:281–286.

    Google Scholar 

  • Sanger, F., Nickless, S. and Coulson, A. R. (1977) DNA sequencing with chain-terminating inhibitors.Proc. Natl. Acad. Sci. USA 74:5463–5467.

    Google Scholar 

  • Sanger, F., Coulson, A. R., Barrell, B. G., Smith, A. J. H. and Roe, B. A. (1980) Cloning into single-stranded bacteriophage as an aid to rapid DNA sequencing.J. Mol. Biol. 143:161–178.

    Google Scholar 

  • Saraste, M. and Walker, J. E. (1982) Internal sequence repeats and the path of polypeptide in mitochondrial ADP/ATP translocase.FEBS Lett. 144:250–256.

    Google Scholar 

  • Sauer, N., Caspari, T., Klebl, F. and Tanner, W. (1990a) Functional expression of theChlorella hexose transporter inSchizosaccaromyces pombe.Proc. Natl. Acad. Sci. USA 87:7949–7952.

    Google Scholar 

  • Sauer, N., Friedlander, K. and Graml-Wicke, U. (1990b) Primary structure, genomic organisation, and heterologous expression of a glucose transporter fromArabidopsis thaliana.EMBO J. 9:3045–3050.

    Google Scholar 

  • Sauer, N. and Tanner, W. (1989) A eucaryotic H+-cotransporter cDNA clone of the chlorella hexose transporter.FEBS Lett. 259:43–46.

    Google Scholar 

  • Scarborough, G. A. (1985) Binding energy, conformational change, and the mechanism of transmembrane solute movements.Microbiol. Rev. 49:214–231.

    Google Scholar 

  • Schnetz, K., Sutrina, S. L., Saier, M. H. Jr. and Rak, B. (1990) Identification of catalytic residues in the β-glucoside permease ofEscherichia coli by site-specific mutagenesis and demonstrations of interdomain cross-reactivity between the β-glucoside and glucose systems.J. Biol. Chem. 265:13464–13471.

    Google Scholar 

  • Sen, A. K. and Widdas, W. F. (1962) Determination of the temperature and pH dependence of Glucose transfer across the human erythrocyte membrane measured by Glucose exit.J. Physiol. 160:392–403.

    Google Scholar 

  • Seol, W. and Shatkin, A. J. (1990) TheEscherichia coli kgtP gene encodes an alpha-ketoglutarate transporter.Proc. Natl. Acad. Sci. USA 88:3802–3806.

    Google Scholar 

  • Sheridan, R. P. and Chopra, I. (1991) Origin of tetracycline efflux proteins: conclusions from nucleotide sequence analysis.Mol. Microbiol. 5:895–900.

    Google Scholar 

  • Sinev, M. A., Razgulyaev, O. I., Vas, M., Timchenko, A. A. and Ptitsyn, O. B. (1989) Correlation between enzyme activity and hinge-bending domain displacement in 3-phosphoglycerate kinase.Euro. J. Biochem. 180:61–66.

    Google Scholar 

  • Skou, J. C. (1975) Relationship to transport of sodium and potassium.Quart. Rev. Biophys. 7:401–434.

    Google Scholar 

  • Stack, S. P., Stein, D. A. and Landfear, S. M. (1990) Structural isoforms of a membrane transport protein fromLeishmania enriettii.Mol. Cell. Biol. 10:6785–6790.

    Google Scholar 

  • Stein, W. D. (1967)The Movement of Molecules across Cell Membranes. Academic Press, London.

    Google Scholar 

  • Stein, W. D. (1968) The transport of sugars.Brit. Med. Bull. 24:146–149.

    Google Scholar 

  • Tanford, C. (1983) Mechanism of free energy coupling in active transport.Annu. Rev. Biochem. 52:379–409.

    Google Scholar 

  • Teather, R. M., Müller-Hill, B., Abrutsch, U., Aichele, G. and Overath, P. (1978) Amplification of the lactose carrier protein inEscherichia coli using a plasmid vector.Mol. Gen. Genet. 159:239–248.

    Google Scholar 

  • Teather, R. M., Bramhall, J., Riede, I., Wright, J. K., Fürst, M., Aichele, G., Wilhelm, U. and Overath, P. (1980) Lactose carrier protein ofEscherichia coli. Structure and expression of plasmids carrying the Y gene of thelac operon.Eur. J. Biochem. 108:223–231.

    Google Scholar 

  • Trumble, W. R., Viitanen, P. V., Sarkar, H. K., Poonian, M. S. and Kaback, H. R. (1984) Site-directed mutagenesis of CYS148 in thelac carrier protein ofEscherichia coli.Biochim. Biophys. Acta 119:860–867.

    Google Scholar 

  • Tsuchiya, T. and Wilson, T. H. (1978) Cation-sugar transport in the melibiose transport system ofEscherichia coli.Membr. Biochem. 2:63–79.

    Google Scholar 

  • Tubbs, P. K. and Garland, P. B. (1968) Membranes and fatty acid metabolism.Brit. Med. Bull. 24:158–164.

    Google Scholar 

  • Ussing, H. H. (1952) Some aspects of the application of tracers in permeability studies. In:Advances in Enzymology Volume XIII. (Nord, F. F. Ed.) Interscience Publishers, New York and London. pp. 21–65.

    Google Scholar 

  • van der Rest, M. E., Schwarz, E., Oesterhelt, D. and Konings, W. N. (1990) DNA sequence of a citrate carrier ofKlebsiella pneumoniae.Eur. J. Biochem. 189:401–407.

    Google Scholar 

  • Van Leeuwen, C. C. M., Postma, E., Van den Broek, P. J. A. and Van Steveninck, J. (1991) Proton-motive force-driven D-galactose transport in plasma membrane vesicles from the yeastKluyveromyces marxianus.J. Biol. Chem. 19:12146–12151.

    Google Scholar 

  • Viitanen, P., Garcia, M. L. and Kaback, H. R. (1984) Purified reconstitutedlac carrier protein fromEscherichia coli is fully functional.Proc. Natl. Acad. Sci. USA 81:1629–1633.

    Google Scholar 

  • Vogel, H., Wright, J. K. and Jähnig, F. (1985) The structure of the lactose permease derived from Raman spectroscopy and prediction methods.EMBO J. 4:3625–3631.

    Google Scholar 

  • von Heijne, G. (1987)Sequence Analysis in Molecular Biology Treasure Trove or Trivial Pursuit. Academic Press, London.

    Google Scholar 

  • von Heijne, G. (1988) Transcending the impenetrable: how proteins come to terms with membranes.Biochim. Biophys. Acta 947:307–333.

    Google Scholar 

  • Walker, J. E., Fearnley, I. M., Lutter, R., Todd, R. J. and Runswick, M. J. (1990) Structural aspects of proton-pumping ATPases.Phil. Trans. R. Soc. Lond. B326:367–378.

    Google Scholar 

  • Watson, J. D. and Crick, F. H. C. (1953) Molecular structure of nucleic acids.Nature 171:737–738.

    Google Scholar 

  • Weiss, M. S., Wacker, T., Weckesser, J., Welte, W. and Schultz, G. E. (1990) The three-dimensional structure of porin fromRhodobacter capsulata at 3 Å resolution.FEBS Lett. 267:268–272.

    Google Scholar 

  • West, I. C. (1970) Lactose transport coupled to proton movements inEscherichia coli.Biochem. Biophys. Res. Commun. 41:655–661.

    Google Scholar 

  • West, I. C. and Mitchell, P. (1972) Proton-coupled β-galactoside translocation in non-metabolizingEscherichia coli.Bioenergetics 3:445–462.

    Google Scholar 

  • West, I. C. and Mitchell, P. (1973). Stoichiometry of lactose-proton symport across the plasma membrane ofEscherichia coli.Biochem. J. 132:587–592.

    Google Scholar 

  • White, S. H. and Jacobs, R. E. (1990) Observations concerning topology and locations of helix ends of membrane proteins of known structure.J. Membrane Biol. 115:145–158.

    Google Scholar 

  • Widdas, W. F. (1952) Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer.J. Physiol. Lond. 118:23–29.

    Google Scholar 

  • Widdas, W. F. (1988) Old and new concepts of the membrane transport for glucose in cells.Biochim. Biophys. Acta 947:385–404.

    Google Scholar 

  • Wright, J. K., Schwarz, H., Straub, E., Overath, P., Bieseler, B. and Beyreuther, K. (1982) Lactose carrier protein ofEscherichia coli. Reconstitution of galactose binding and countertransport.Eur. J. Biochem. 124:545–552.

    Google Scholar 

  • Wright, J. K., Teather, R. M. and Overath, P. (1983) Lactose permease ofEscherichia coli.Methods Enzymol. 97:158–175.

    Google Scholar 

  • Wright, J. K., Seckler, J. M. and Overath, P. (1986) Molecular aspects of sugar: ion cotransport.Annu. Rev. Biochem. 55:225–248.

    Google Scholar 

  • Wrubel, W., Stochaj, U., Sonnewald, U., Theres, C. and Ehring, R. (1990) Reconstitution of an active lactose carrierin vivo by simultaneous synthesis of two complementary protein fragments.J. Bacteriol. 172:5374–5381.

    Google Scholar 

  • Yamato, I. and Anraku, Y. (1989) Dependence on pH of substrate binding to a mutant lactose carrier,lacY un, inEscherichia coli.Biochem. J. 258:389–396.

    Google Scholar 

  • Yazyu, H., Shiota-Niiya, S., Futai, M. and Tsuchiya, T. (1984) Alteration in cation specificity of the melibiose transport carrier ofEscherichia coli due to replacement of proline 122 with serine.J. Bacteriol. 162:933–937.

    Google Scholar 

  • Yazyu, H., Shiota-Niiya, S., Shimamoto, T., Kanazawa, H., Futai, M. and Tsuchiya, T. (1984). Nucleotide sequence of the melB gene and characteristics of deduced amino acid sequence of the melibiose carrier inEscherichia coli.J. Biol. Chem. 259:4320–4326.

    Google Scholar 

  • Yoshida, H., Bogaki, M., Nakamura, S., Ubukata, K. and Konno, M. (1990) Nucleotide sequence and characterisation of theStaphylococcus aureus norA gene, which confers resistance to quinolones.J. Bacteriol. 172:6942–6949.

    Google Scholar 

  • Zhang, C.-C., Durand, M.-C., Jeanjean, R. and Joset, F. (1989) Molecular and genetical analysis of the fructose-glucose transport system in the cyanobacteriumSynechocystis PCC6803.Mol. Microbiol. 3:1221–1229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henderson, P.J.F. Studies of translocation catalysis. Biosci Rep 11, 477–538 (1991). https://doi.org/10.1007/BF01130216

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01130216

Key Words

Navigation