Skip to main content
Log in

Improved accuracy of MEG localization in the temporal region with inclusion of volume current effects

  • Published:
Brain Topography Aims and scope Submit manuscript

Summary

We studied the magnetic field maps generated by six dipoles in the temporal region of a plastic skull filled with conducting gel. The data were processed with two mathematical models. One, using Biot-Savart's law, considered only the magnetic field generated by a localized current dipole, and the other considered a dipole in a sphere and included volume current effects. The contribution of volume current effects to the MEG maps was significant. The localizing capability of MEG improved from an average distance of 2.9 cm to 0.9 cm when volume current effects were considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barth, D.S., Sutherling, W., Engel, J. and Beatty, J. Neuromagnetic localization of epileptiform spike activity in the human brain. Science, 1982, 218: 891–894.

    PubMed  Google Scholar 

  • Barth, D.S., Sutherling, W., Engel, J. and Beatty, J. Neuromagnetic evidence of spatially distributed sources underlying epileptiform spikes in the human brain. Science, 1984, 223: 293–296.

    PubMed  Google Scholar 

  • Barth, D.S., Sutherling, W., Broffman, J. and Beatty, J. Magnetic localization of a dipolar current source implanted in a sphere and a human cranium. Electroencephal. Clin. Neurophysiol., 1986, 63: 260–273.

    Google Scholar 

  • Buchanan, D.S., Paulson, D. and Williamson, S. Instrumentation for clinical application in neuromagnetism. In: R.W. Fast (Ed.), Advances in Cryogenic Engineering, Vol. 33. Plenum, New York, 1988, 97–106.

    Google Scholar 

  • Ducla-Soares, E., Rose, D.F. and Sato, S. Volume current effects in magnetoencephalography. Phys. Med. Biol. [Suppl 1], 1988, 33:33.

    Google Scholar 

  • Ducla-Soares, E., Rose, D.F., Sato, S. and Geduldig, D. Volume current effects in MEG and the homogeneous head model. To be published.

  • Hamalainen, M. and Sarvas, J. Feasibility of the homogeneous head model in the interpretation of neuromagnetic fields. Phys. Med. Biol., 1987, 32: 91–97.

    PubMed  Google Scholar 

  • Hari, R. and Ilmoniemi, R. Cerebral Magnetic Fields. CRC Critical Reviews in Biomedical Engineering, 1986, 14: 93–126.

    Google Scholar 

  • Hari, R., Joutsiniemi, S.L. and Sarvas, J. Spatial resolution of neuromagnetic records: theoretical calculations in a spherical model. Electroencephal. Clin. Neurophysiol., 1988, 71: 64–72.

    Google Scholar 

  • Janday, B.S. and Swithenby, S. J. Analysis of magnetoen-cephalographic data using the homogeneous sphere model: empirical test. Phys. Med. Biol., 1987, 32: 105–113.

    PubMed  Google Scholar 

  • Nunez, P.L. Electric Fields of the Brain. Oxford University Press, New York, 1981.

    Google Scholar 

  • Okada, Y.C., Tannenbaum, R., Williamson, S.J. and Kaufman, L. Somatotopic organization of the human somatosensory cortex revealed by neuromagnetic measurements. Exp. Brain. Res., 1984, 56: 197–205.

    PubMed  Google Scholar 

  • Pantev, C., Hoke, M., Lehnertz, K. Lutkenhoner, B., Anogianakis, G. and Wittkowski, W. Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. Electroencephal. Clin. Neurophysiol., 1988, 69: 160–170.

    Google Scholar 

  • Ricci, G.B., Romani, G.L., Salustri, C., Pizzella, V., Torrioli, G., Buonomo S., Peressow M. and Modena I. Study of focal epilepsy by multichannel neuromagnetic measurements. Electroencephal. Clin. Neurophysiol., 1987, 66: 358–368.

    Google Scholar 

  • Romani, G.L. and Rossini, P. Neuromagnetic functional localization: Principles, state of the art, and perspectives. Brain Topography, 1988, 1: 5–21.

    PubMed  Google Scholar 

  • Romani, G.L., Williamson, S., and Kaufman, L. Tonotopic organization of the human auditory cortex. Science, 1982, 16: 1339–1340.

    Google Scholar 

  • Rose, D.F., Sato, S., Smith, P.D. and White, J. Modelling the temporal region in patients with temporal lobe epilepsy. Phys. Med. Biol., 1987a, 32: 59–63.

    PubMed  Google Scholar 

  • Rose, D.F., Sato, S., Smith, P.D., Porter, R.J., Theodore, W.H., Friauf, W., Bonner, R., and Jabbari, B. Localization of magnetic interictal discharges in temporal lobe epilepsy. Ann. Neurol., 1987b, 22: 348–354.

    PubMed  Google Scholar 

  • Rose, D.F., Smith, P.D. and Sato, S. Magnetoencephalography and epilepsy research. Science, 1987c, 238: 329–335.

    PubMed  Google Scholar 

  • Rose, D.F., Sato, S., Smith, P.D., Friauf, W. and Ducla-Soares, E. Subdural electrode as a dipole source for magnetoen-cephalography. Electroencephal. Clin. Neurophysiol., 1989, 72: 86–90.

    Google Scholar 

  • Sams, M., Hamalainen, M., Antervo, A., Kaukoranta, E., Reinikainen, K. and Hari, R. Cerebral neuromagnetic responses evoked by short auditory stimuli. Electroencephal. Clin. Neurophysiol., 1985, 61: 254–266.

    Google Scholar 

  • Sarvas, J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys. Med. Biol., 1987, 32: 11–22.

    PubMed  Google Scholar 

  • Sato, S., Sheridan, P., Smith, P., Bonner, R., Weinstock, H., Rose, D., Theodore, W., Friauf, W., and Porter, R. Comparison of electroencephalographic, magnetoencephalographic, and electrocorticographic recording in two patients with seizures. In: H. Weinberg, G. Stroink, T. Katila (Eds.), Biomagnetism: Applications and Theory, Pergamon Press, New York, 1985, 311–315.

    Google Scholar 

  • Stok, C.J., Meijs, J.W.H. and Peters, M.J. Inverse solutions based on MEG and EEG applied to volume conductor analysis. Phys. Med. Biol., 1987, 32: 99–104.

    PubMed  Google Scholar 

  • Stok, C.J. The inverse problem in EEG and MEG with application to visual evoked responses. PhD thesis, Leiden University, 1986.

  • Sutherling, W.W., Crandall, P.H., Engel, Jr. J., Darcey, T.M., Cahan, L.D. and Barth, D.S. The magnetic field of complex partial seizures agrees with intracranial localizations. Ann. Neurol., 1987, 21: 548–558.

    PubMed  Google Scholar 

  • Sutherling, W.W., Crandall, P.H., Cahan, L.D. and Barth, D.S. The magnetic field of epileptic spikes agrees with intracranial localization in complex partial epilespy. Neurology, 1988, 38: 778–786.

    PubMed  Google Scholar 

  • Weinberg, H., Bricket, P., Coolsma, F. and Baff, M. Magnetic localization of intracranial dipoles: simulation with a physical model. Electroencephal. Clin. Neurophysiol. 1986, 64: 159–170.

    Google Scholar 

  • Williamson, S.J. and Kaufman, L. Biomagnetism. J. Magn. Magn. Mater., 1981, 22: 129–201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On sabatical leave from the Department of Physics, University of Lisbon, Lisbon, Portugal

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rose, D.F., Ducla-Soares, E. & Sato, S. Improved accuracy of MEG localization in the temporal region with inclusion of volume current effects. Brain Topogr 1, 175–181 (1989). https://doi.org/10.1007/BF01129580

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01129580

Key words

Navigation