Skip to main content
Log in

Empirical bases for constraints in current-imaging algorithms

  • Published:
Brain Topography Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aine, C., Supek, S., Ranken, D. and George, J. Evidence of retinotopic organization within multiple visual areas of human cortex: neuromagnetic studies. Proc. of Xth Int. Conf. Event-Related Potentials of the Brain, May 31–June 5, 1992.

  • Barth, D.S. and Di, S. The electrophysiological basis of epileptiform magnetic fields in neocortex. Brain Res., 1990, 530: 35–39.

    PubMed  Google Scholar 

  • Barth, D.S. and Sutherling, W. Current source density and neuromagnetic analysis of the direct cortical response in rat cortex. Brain Res., 1988, 450: 280–294.

    PubMed  Google Scholar 

  • Baule, G.M. and McFee, R. Theory of magnetic detection of the heart's electrical activity. J. Appl. Phys., 1965, 36: 2066–2073.

    Google Scholar 

  • Brenner, D., Lipton, J., Kaufman, L. and Williamson, S.J. Somatically evoked magnetic fields of the human brain. Science, 1978, 199: 81–83.

    Google Scholar 

  • Cohen, D. and Cuffin, N. Demonstration of useful differences between magnetoencephalogram and electroencephalogram. Electroencephal. clin. Neurophysiol., 1983, 56: 38–51.

    Google Scholar 

  • Cohen, D. and Hosaka, H. Magnetic field produced by a current dipole. J. Electrocardiol., 1976, 9: 409–417.

    PubMed  Google Scholar 

  • Cuffin, N. and Cohen, D. Comparison of the magnetoencephalogram and electroencephalogram, Electroenceph. clin. Neurophysiol., 1979, 47: 132–146.

    PubMed  Google Scholar 

  • Geddes, L.A. and Baker, L.E. The specific resistance of biological material - a compendium of data for the biomedical engineer and physiologist. Med. Biol. Eng., 1967, 5: 271–293.

    PubMed  Google Scholar 

  • Geselowitz, D.B. On the magnetic field generated outside an inhomogeneous volume conductor by internal current sources, IEEE Trans. Mag., MAG-6, 1970: 346–347.

    Google Scholar 

  • Grynszpan, F. and Geselowitz, D.B. Model studies of the magnetocardiogram. Biophys. J., 1973, 13: 911–925.

    PubMed  Google Scholar 

  • Hari, R., Aittoniemi, K., Järvinen, M.-L., Katila, T. and Varpula, T. Auditory evoked transient and sustained magnetic fields of the human brain. Exp. Brain Res., 1980, 40: 237–240.

    PubMed  Google Scholar 

  • Hämäläinen, M.S. and Sarvas, J. Feasibility of the homogeneous head model in the interpretation of neuromagnetic fields. Phys. Med. Biol., 1987, 32: 91–97.

    PubMed  Google Scholar 

  • Helmholtz, H. Über einige Gesetze der Verteilung elektrischer Strome in körperlichen Leitern mit Anwendung auf die thierischelektrischen Versuche. Annalen der Physik und Chemie (Ser. 3), 1853, 89: 211–233 and 353–376.

    Google Scholar 

  • Huang. J.-C., Nicholson, C. and Okada, Y.C. Distortion of magnetic evoked fields and surface potentials by conductivity differences at boundaries in brain tissue. Biophys. J., 1990, 57: 1155–1166.

    PubMed  Google Scholar 

  • Lopez, L., Chan, C.Y., Okada, Y.C. and Nicholson, C. Multimodal characterization of population responses evoked by applied electric field in vitro: Extracellular potential, magnetic evoked field, transmembrane potential and currentsource density analysis. J. Neurosci. 1991, 11: 1998–2010.

    PubMed  Google Scholar 

  • Meijs, J.W.H., Bosch, F.G.C., Peters, M.J. and Lopes da Silva, F.H. On the magnetic field distribution generated by a dipolar current source situated in a realistically shaped compartment model of the head. Electroenceph. clin. Neurophysiol., 1987, 66: 286–298.

    PubMed  Google Scholar 

  • Okada, Y.C. Neurogenesis of evoked magnetic fields, somatic evoked magnetic fields, motor field, auditory evoked field, visual evoked field, endogenous magnetic field. In: S.J. Williamson, G.-L. Romani, L. Kaufman and I. Modena (Eds.), Biomagnetism: An Interdisciplinary Approach, Plenum Press, New York, 1983: 399–468.

    Google Scholar 

  • Okada, Y.C. Some experimental constraints on solving the biomagnetic inverse problem. In: S.N. Erné and G.L. Romani (Eds.), Advances in Biomagnetism Functional Localization: A Challenge for Biomagnetism. World Scientific, Teaneck, NJ, 1989a: 170–183.

    Google Scholar 

  • Okada, Y.C. Recent developments on the physiological basis of magnetoencephalography. In: S.J. Williamson (Ed.), Biomagnetism. Plenum Press, New York, 1989b: 273–278.

    Google Scholar 

  • Okada, Y.C. and Nicholson C. Currents underlying the magnetic evoked field in the cerebellum. In: K. Atsumi, M. Kotani, S. Ueno, T. Katila and S.J. Williamson (Eds.), Biomagnetism '87. 1988a: 198–201.

  • Okada, Y.C. and Nicholson, C. Magnetic evoked field associated with transcortical currents in turtle cerebellum. Biophys. J., 1988b, 53: 723–731.

    PubMed  Google Scholar 

  • Okada, Y.C., Lauritzen, M. and Nicholson, C. Magnetic field associated with neural activities in an isolated cerebellum. Brain Res., 1987, 412: 151–155.

    PubMed  Google Scholar 

  • Okada, Y.C., Lähteenmaki, A., Kyuhou, S. and Xu, C. Singletrial detection of somatic evoked magnetic field from an in vivo swine preparation. Soc. Neurosci. Abs., 1991, 17: 837.

    Google Scholar 

  • Okada, Y.C., Kyuhou, S., Lähteenmaki, A. and Xu, C. A highresolution system for Magnetophysiology and its applications. In: M. Hoke, S.N. Erné, Y.C. Okada and G.L. Romani: (Eds.), Biomagnetism: Clinical Aspects, Elsevier, Amsterdam, 1992a: 375–383.

    Google Scholar 

  • Okada, Y.C., Nicholson, C. and Llinás, R. Magnetoencephalography (MEG) as a new tool for non-invasive realtime analysis of normal and abnormal brain activity in humans. In: D. Ottoson and W. Rostene (Eds.), Visualization of Brain Functions. Stockton Press, New York, 1989: 245–266.

    Google Scholar 

  • Okada, Y.C., Nowak, H. and Xu, C. Somatotopic organization of snout representation in the cortex of the swine revealed by somatic magnetic evoked field. Soc. Neurosci. Abs., 1992b, 22: 1390.

    Google Scholar 

  • Roth, B.J. and Wikswo, J.P., Jr. The magnetic field of a single axon: a comparison of theory and experiment. Biophys. J., 1985, 48: 93–109.

    PubMed  Google Scholar 

  • Rotterdam, van, A. Electric and magnetic fields of the brain. Doctoral thesis, Univ. Amsterdam, Radiobiological Institute of the Division for Health Research TNO, Netherlands, 1986.

    Google Scholar 

  • Swinney, K.R. and Wikswo, J.P., Jr. A calculation of the magnetic field of a nerve action potential. Biophys. J. 1980, 32: 719–732.

    PubMed  Google Scholar 

  • Ueno, S., Iramina, K. and Harada, K. Effects of inhomogeneities in cerebral modeling for magnetoencephalography. IEEE Trans. Mag-23, 1987: 3753–3755.

    Google Scholar 

  • Wang, J.-C., Williamson, S.J. and Kaufman, L. Magnetic source images determined by a lead-field analysis: The unique minimum-norm least-squares estimation. IEEE Trans. Biomed. Eng., 1992, 39: 665–675.

    PubMed  Google Scholar 

  • Wikswo, J.P. Jr. and Roth, B.J. Magnetic determination of the spatial extent of a single cortical current source: a theoretical analysis. Electroencephal. clin. Neurophysiol., 1988, 69: 266–276.

    Google Scholar 

  • Williamson, S.J. and Kaufman, L. Magnetic fields of the cerebral cortex. In: S.N. Erné, H.-D. Hahlbohm and H. Lübbig (Eds.), Biomagnetism, Walter de Gruyter, Berlin, 1981: 353–402.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The research from our laboratory included in this review has been supported by a grant from NIH (RO1-NS21149), from NSF (DDR-8820556) and by Department of Veterans Affairs. I would like to thank Airi Lähteenmaki, Shinichi Kyuhou and Chibing Xu for their help in collecting data from the swine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okada, Y. Empirical bases for constraints in current-imaging algorithms. Brain Topogr 5, 373–377 (1993). https://doi.org/10.1007/BF01128693

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01128693

Key words

Navigation