Skip to main content
Log in

Improving the beam quality of solid-state systems using both outside and inside cavity devices with variable optical characteristics along the cross section

  • Published:
Journal of Soviet Laser Research Aims and scope

Abstract

This paper presents the results of application to different laser installations of soft or apodized apertures (AA) [1–3] with smooth transmission profiles decreasing from center to edges. Two types of AA, which were made of CaF2:Pr crystals, have been used: induced absorption (IA) AA and photooxidation (PhO) AA. The ∼3–45-mm-diameter IA and PhO AA with smooth monotonic flat-top profiles have been used in 1.06-μm laser amplifier systems to suppress hard-edge Fresnel diffraction rings in beam cross section and to increase the second harmonic conversion efficiency. The ∼3–4-mm-diameter PhO AA with bell-like transmission profiles were placed inside the 2.94-μm and 1.06-μm resonators of master oscillators. The tendency of the output energy to increase by 1.3–1.8 times and the decrease in beam divergence in single-mode lasing as compared with a hard-edge aperture have been observed in the experiments described below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. P. Jacquinot and B. Roizen-Dossier, “Apodization,” in: Progress in Optics, E. Wolf (ed.), Vol. 3 (1964), pp. 29–186.

  2. V. R. Costich and B. C. Johnson, “Apertures to shape high-power beams,” Laser Focus,10, 43–46 (1974).

    Google Scholar 

  3. S. G. Lukishova, I. K. Krasyuk, P. P. Pashinin, and A. M. Prokhorov, “Apodization of light beam as a method of brightness enhancement in neodymium glass laser installations,” in: Formation and Control of Optical Wavefronts, Proc. of the Inst. of General Physics of the USSR Academy of Sciences, P. P. Pashinin (ed.), Vol. 7, Nova Science Publ. (1989), pp. 127–204. (To correct misprints see Russian version by Nauka Publ., Moscow, 1987.)

  4. A. J. Campillo, J. E. Pearson, S. L. Shapiro, and N. J. Terrel, “Fresnel diffraction effects in the design of high-power laser systems,” Appl. Phys. Lett.,23, 85–87 (1973).

    Google Scholar 

  5. I. A. Fleck and C. Layne, “Study of self-focusing damage in a high-power Nd: Glass-rod amplifier,” Appl. Phys. Lett.,22, 467–469 (1973).

    Google Scholar 

  6. N. B. Baranova, N. E. Bykovskiy, B. Ya. Zel'dovich, and Yu. V. Senatskiy, “Diffraction and self-focusing of radiation in a high-power light beam amplifier,” Kvantovaya Élektron.,1, 2435–2458 (1974).

    Google Scholar 

  7. V. I. Kryzhanovskiy, B. M. Sedov, V. A. Serebryakov, A. D. Tsvetkov, and N. E. Yashin, “Shaping of the spatial structure of solid-state laser radiation by apodized and hard apertures,” Kvantovaya Élektron.,10, 354–359 (1983).

    Google Scholar 

  8. A. N. Zherikhin, Yu. A. Matveets, and S. V. Chekalin, “Self-focusing-induced limiting of brightness from ultrashort amplification in neodymium glass and in YAG,” Kvantovaya Élektron.,3, 1585–1590 (1976).

    Google Scholar 

  9. Lawrence Livermore National Laboratory, Annual Report, UCRL-50021-76 (1977).

  10. S. N. Vlasov and V. I. Talanov, “Selection of axial modes in open resonators,” Radiotekh. Élektron.,10, 552–554 (1965).

    Google Scholar 

  11. N. G. Vakhitov, “Open resonators with mirrors having variable reflection coefficients,” Radiotekh. Élektron.,10 1676–1683, (1965).

    Google Scholar 

  12. S. N. Vlasov, “Mirrors of resonators with variable reflection coefficient,” Radiotekh. Élektron.,10, 1715–1718 (1965).

    Google Scholar 

  13. H. Kogelnik, “On the propagation of Gaussian beams of light through lenslike media including those with a loss or gain variation,” Appl. Opt.,4, 1562–1569 (1965).

    Google Scholar 

  14. L. Casperson and A. Yariv, “The Gaussian mode in optical resonators with a radial gain profile,” Appl. Phys. Lett.,12, 355–357 (1968).

    Google Scholar 

  15. G. Giuliani, Y. K. Park, and R. L. Byer, “Radial birefringent element and its application to laser resonator design,” Opt. Lett.,5, 491–493 (1980).

    Google Scholar 

  16. J. M. Eggleston, G. Giuliani, and R. L. Byer, “Radial intensity filters using radial birefringent elements,” J. Opt. Soc. Am.,71, 1264–1272 (1981).

    Google Scholar 

  17. D. J. Harter and J. C. Walling, “Low-magnification unstable resonators used with ruby and alexandrite lasers,” Opt. Lett.,11, 706–708 (1986).

    Google Scholar 

  18. P. Lavigne, N. McCarthy, and J.-G. Demers, “Design and characterization of complementary Gaussian reflectivity mirrors,” Appl. Opt.,24, 2581–2586 (1985).

    Google Scholar 

  19. Graded Reflectivity Mirrors, Institute National D'Optique, Sainte-Foy, Quebec, Canada, Firm Leaflet, 1988.

  20. P. Lavigne, A. Parent, D. Pascale, and N. McCarthy, “A compact wide aperture single-mode TE-CO2 laser with a low chirp rate,” IEEE J. Quantum Electron.,QE-22, 2200–2203 (1986).

    Google Scholar 

  21. N. McCarthy and P. Lavigne, “Large size Gaussian modes in unstable resonators using Gaussian mirrors,” Opt. Lett.,10, 553–555 (1985).

    Google Scholar 

  22. A. Parent, N. McCarthy, and P. Lavigne, “Effects of hard apertures on mode properties of resonators with Gaussian reflectivity mirrors,” IEEE J. Quantum Electron.,QE-23, 222–228 (1987).

    Google Scholar 

  23. K. J. Snell, N. McCarthy, P. Lavigne, and M. Piche, “Single transverse mode oscillation from an unstable resonator Nd:YAG laser using a variable reflectivity mirror,” Opt. Commun.,65, 377–382 (1988).

    Google Scholar 

  24. A. Parent and P. Lavigne, “Increased frequency conversion of Nd:YAG laser radiation with a variable-reflectivity mirror,” Opt. Lett.,14, 399–401 (1989).

    Google Scholar 

  25. A. Parent and P. Lavigne, “Variable reflectivity unstable resonators for coherent laser radar emitters,” Appl. Opt.,28, 901–903 (1989).

    Google Scholar 

  26. A. Parent and P. Lavigne, “Single-longitudinal-mode operation of an unstable Nd:YAG ring resonator with a variable reflectivity coupler,” in: Technical Digest Conference on Lasers and Electro-optics (Optical Society of America, Washington, DC, 1990), paper CWF4.

  27. S. De Silvestri, P. Laporta, V. Magni, O. Svelto, and B. Majocchi, “Unstable laser resonators with super-Gaussian mirrors,” Opt. Lett.,13, 201–203 (1988).

    Google Scholar 

  28. S. De Silvestri, P. Laporta, V. Magni, and O. Svelto, “Solid-state laser unstable resonators with tapered reflectivity mirrors: the super-Gaussian approach,” IEEE J. Quantum Electron.,QE-24, 1172–1177 (1988).

    Google Scholar 

  29. D. De Silvestri, P. Laporta, V. Magni, O. Svelto, C. Arnone, C. Cali, S. Sciortino, and C. Zizzo, “Nd:YAG laser with multidielectric variable reflectivity output coupler,” Opt. Commun.67, 229–232 (1988).

    Google Scholar 

  30. C. Zizzo, C. Arnone, C. Cali, and S. Sciortino, “Fabrication and characterization of tuned Gaussian mirrors for the visible and near infrared,” Opt. Lett.,13, 342–344 (1988).

    Google Scholar 

  31. G. Emiliani, A. Piegari, S. De Silvestri, P. Laporta, and V. Magni, “Optical coatings with variable reflectance for laser mirrors,” Appl. Opt.,28, 2832–2837 (1989).

    Google Scholar 

  32. S. De Silvestri, V. Magni, O. Svelto, G. Valentini, P. Laporta, and C. Malvicini, “Effects of reflectivity profile and gain saturation in Nd:YAG lasers with super-Gaussian mirrors,” in: Technical Digest, Conference on Lasers and Electro-optics (Optical Society of America, Washington, DC, 1990), paper JWA4.

  33. D. V. Willets and M. R. Harris, “Output characteristics of a compact I-J carbon dioxide laser with a Gaussian reflectivity resonator,” IEEE J. Quantum Electron,QE-24, 849–855 (1988) (the Variable Reflectivity Mirror of Interoptics, Ltd., Nepean, Ont., K2G 063, Canada).

    Google Scholar 

  34. STC Components, Harlow, UK Laser 89 Preview, in Opt. Laser Technol.,21, 147 (1989).

  35. R. Grunwald, G. Szczepanski, I. Pinz, and D. Schaefer, “Variable reflectivity in IR-laser outcoupling mirrors,” Abstracts of 2nd European Conf. on Quantum Electron., EQEC'89, part II, p. 2.31, Dresden (1989).

    Google Scholar 

  36. R. Grunwald, I. Pinz, H. Schönnagel, and D. Schäfer, “Apodizing IR-laser outcoupling mirrors: design, fabrication and application,” Preprint 90-4, July 1990, Zentralinstitut für Optik und Spektroskopie, Berlin, DDR.

    Google Scholar 

  37. A. Caprara, S. Butcher, and R. Aubert, “Injection seeding of an Nd:YAG laser utilizing a radially variable reflectivity output coupler,” in: Quantel Intern. Leaflet, “The YG 600 Series, High Performance Nd:YAG lasers,” pp. 6–7.

  38. A. Caprara, S. Butcher, and R. Aubert, “Injection of a Nd:YAG laser utilizing a radially variable reflectivity output coupler,” Proc. SPIE 912, pp 31–31 (1988).

    Google Scholar 

  39. Quantel International, Inc., Santa Clara, USA, “The Gaussian mirror resonator — higher performance for the Nd:YAG lasers,” Laser Optronics, September 1989, p. 15.

  40. E. Armandillo and G. Giuliani, “Achievement of large-sized TEM00 mode from an excimer laser by means of a novel apoditic filter,” Opt. Lett.,10, 445–447 (1985).

    Google Scholar 

  41. S. De Silvestri, P. Laporta, V. Magni, and O. Svelto, “Radially variable reflectivity output coupler of novel design for unstable resonators,” Opt. Lett.,12, 84–86 (1987).

    Google Scholar 

  42. S. De Silvestri, P. Laporta, and V. Magni, “Laser output coupler based on a radially variable interferometer,” J. Opt. Soc. Am., A, Ser. 2,4, 1413–1418 (1987).

    Google Scholar 

  43. J. S. Uppal and R. G. Harrison, “Gaussian reflectivity mirror with an absorbing lens,” Appl. Opt.,28, 1449–1451 (1989).

    Google Scholar 

  44. A. N. Kolerov, Sh. O. Arzumanyan, K. P. Chirkina, and I. I. Gritsai, “Soft diaphragms for visible-range lasers,” Kvantovaya Élektron.,15, 2582–2584 (1988).

    Google Scholar 

  45. W. Rupp and P. Greve, “Various possibilities of applying liquid crystals in laseroptics,” Laser Optoelektron.,21, 46–53 (1989).

    Google Scholar 

  46. Yu. A. Anan'ev and V. E. Sherstobitov, “Influence of the edge effects on the properties of unstable resonators,” Kvantovaya Élektron.,1, 82–89 (1971).

    Google Scholar 

  47. E. A. Maunders, G. L. McAllister, and W. H. Steier, “Experiments on improved unstable mode profiles by aperture shaping,” IEEE J. Quantum Electron.,QE-10, 821–822 (1974).

    Google Scholar 

  48. S. A. Dimakov, S. I. Zavgorodneva, L. V. Koval'chuk, A. Yu. Rodionov, V. E. Sherstobitov, and V. P. Yashukov, “A study of spatial characteristics of the radiation from a CO2 EIL with intracavity apodization,” Kvantovaya Élektron.,17, 291–295 (1990).

    Google Scholar 

  49. M. E. Smithers, T. S. Salvi, and G. S. Dente, “Unstable resonator with canceling edge waves,” Appl. Opt.,21, 729–732 (1982).

    Google Scholar 

  50. A. H. Paxton and T. C. Salvi, “Unstable optical resonator with self-imaging aperture,” Opt. Commun.,26, 305–308 (1978).

    Google Scholar 

  51. I. K. Krasyuk, S. G. Lukishova, D. M. Margolin, P. P. Pashinin, A. M. Prokhorov, and V. D. Terekhov, “Induced absorption soft apertures,” Pis'ma Zh. Tekh. Fiz.,2, 577–581 (1976).

    Google Scholar 

  52. V. N. Belyaev, N. E. Bykovskiy, Yu. V. Senatskiy, and B. V. Sobolev, “Shaping of absorption layers by penetrating radiation in optical medium of neodymium laser,” Kvantovaya Élektron.,3, 2286–2289 (1976).

    Google Scholar 

  53. S. G. Lukishova, “Certain problems in shaping of the spatial and temporal profile of laser radiation,” Ph.D Dissertation, Moscow Physical and Technical Inst. (1976).

  54. B. G. Gorshkov, V. K. Ivanchenko, V. K. Karpovich, I. K. Krasyuk, S. G. Lukishova, D. M. Margolin, P. P. Pashinin, E. A. Simun, V. A. Sokolov, V. D. Terekhov, and L. V. Chernycheva, “Apodizing diaphragms based on induced absorption with a large light beam diameter and their studies in high-power laser units at a wavelength of 1.06 μm,” Kvantovaya Élektron.,12, 1453–1458 (1985).

    Google Scholar 

  55. S. G. Lukishova and L. V. Chernysheva, “Apodized apertures for IR lasers,” Infrared Phys.,29, 285–289 (1989).

    Google Scholar 

  56. S. G. Lukishova, “Apodized apertures for visible and near infrared band powerful lasers,” Exp. Tech. Phys. (Berlin),36, 435–442 (1988). (In Fig. 1 the left set of beam spots must be at the right side.)

    Google Scholar 

  57. S. G. Lukishova, P. P. Pashinin, S. Kh. Batygov, and B. M. Terentiev, “Soft apertures to shape high-power laser beams,” in: Proc. SPIE, Vol. 1132, 2nd Intern. Congress on Opt. Science and Eng., Paris, April 1989, paper 1130-10.

  58. S. G. Lukishova, P. P. Pashinin, S. Kh. Batygov, V. A. Arkhangelskaya, A. E. Poletimov A. S. Scheulin, and B. M. Terentiev, “High-power laser beam shaping using apodized apertures,” Laser Part. Beams,8, 349–360 (1990).

    Google Scholar 

  59. V. K. Ivanchenko, S. G. Lukishova, D. M. Margolin, Yu. V. Federov, and L. V. Chernysheva, “The method of fabrication of apodized apertures,” Inventor's Certificate of the USSR, No. 1098409 (1984).

  60. A. N. Kolerov, B. V. Melkumyan, E. E. Kuzmina, and V. A. Vratsky, “Lasers with a LiF prism,” in: Pulse Photometry, Optical State Institute, Leningrad, No. 8, 62–64 (1984).

    Google Scholar 

Download references

Authors

Additional information

Institute of Radioengineering and Electronics, Academy of Sciences of the USSR. Institute of General Physics, Academy of Sciences of the USSR. Translated from Preprint No. 17 of the Institute of General Physics, Moscow, 1991.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukishova, S.G., Minhuey Mendez, N.R., Ter-Mikirtychev, V.V. et al. Improving the beam quality of solid-state systems using both outside and inside cavity devices with variable optical characteristics along the cross section. J Russ Laser Res 12, 295–307 (1991). https://doi.org/10.1007/BF01128446

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01128446

Keywords

Navigation