Skip to main content
Log in

Binding of doxorubicin to cardiolipin as compared to other anionic phospholipids—An evaluation of electrostatic effects

  • Published:
Bioscience Reports

Abstract

The binding of doxorubicin to large unilamellar vesicles consisting of cardiolipin or other anionic phospholipids was analyzed in terms of the local drug concentration at the membrane surface, according to the Gouy-Chapman theory. The analysis suggests strong positive binding cooperativity. Part of the drug binds in the uncharged form. The affinity for cardiolipin and other anionic phospholipids is comparable. A binding level of 0.5 doxorubicin per lipid-phosphorus is reached when the local concentration of free doxorubicin monomer-equivalents at the membrane surface is about 0.2–0.7 mM. This contrasts with earlier findings indicating a 300–1000 fold higher affinity for cardiolipin. The present analysis provides an explanation for this apparent discrepancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Capranico, G., Zunino, F., Kohn, K. W. and Pommier, Y. (1990)Biochemistry 29: 562–569.

    PubMed  Google Scholar 

  2. Griffin, E. A., Vanderkooi, J. M., Maniara, G. and Erecinska, M. (1986)Biochemistry 25:7875–7880.

    PubMed  Google Scholar 

  3. Escriba, P. V., Ferrer-Montiel, A. V., Ferragut, J. A. and Gonzalez-Ros, J. M. (1990)Biochemistry 29:7275–7282.

    PubMed  Google Scholar 

  4. Burke, T. G. and Tritton, T. R. (1985)Biochemistry 24:1768–1776.

    PubMed  Google Scholar 

  5. Nicolay, K., Timmers, R. J. M., Spoelstra, E., van der Neut, R., Fok, J. J., Huigen, Y., Verkleij, A. and de Kruijff, B. (1984)Biochim. Biophys. Acta 778:359–371.

    PubMed  Google Scholar 

  6. Nicolay, K., Sautereau, A. M., Tocanne, J. F., Brasseur, R., Huart, P., Ruysschaert, J. M. and de Kruijff, B. (1988)Biochim Biophys. Acta 940:197–208.

    PubMed  Google Scholar 

  7. De Wolf, F. A., Maliepaard, M., van Dorsten, F., Berghuis, I., Nicolay, K. and de Kruijff, B. (1991)Biochim. Biophys. Acta 1096:67–80.

    Google Scholar 

  8. Hannun, Y. A., Loomis, C. R. and Bell, R. M. (1986)J. Biol. Chem. 261:7184–7190.

    PubMed  Google Scholar 

  9. Nishizuka, Y. (1986)Science 233:305–312.

    PubMed  Google Scholar 

  10. Nicolay, K. and de Kruijff, B. (1987)Biochim. Biophys. Acta 892:320–330.

    PubMed  Google Scholar 

  11. Goormaghtigh, E., Chatelain, P., Caspers, J. and Ruysschaert, J. M. (1980)Biochim. Biophys. Acta 597:1–14.

    PubMed  Google Scholar 

  12. Goormaghtigh, E., Chatelain, P., Caspers, J. and Ruysschaert, J. M. (1980)Biochem. Pharmacol. 29:3003–3010.

    PubMed  Google Scholar 

  13. Constantinides, P. P., Wang, Y. Y., Burke, T. G. and Tritton, T. R. (1990)Biophys. Chem. 35:259–264.

    PubMed  Google Scholar 

  14. De Wolf, F. A., Demel, R. A., Bets, D., van Kats, C. and de Kruijff, B. (1991)FEBS Lett. 288:237–240.

    PubMed  Google Scholar 

  15. Goormaghtigh, E., Huart, P., Praet, M., Brasseur, R. and Ryusschaert, J. M. (1990)Biophys. Chem. 35:247–257.

    PubMed  Google Scholar 

  16. McLaughlin, S. (1989)Ann. Rev. Biophys. Biophys. Chem. 18:113–136.

    Google Scholar 

  17. Langner, M., Cafiso, D., Marcelja, S. and McLaughlin, S. (1990)Biophys. J. 57:335–349.

    PubMed  Google Scholar 

  18. Seelig, A., Allegrini, P. R. and Seelig, J. (1988)Biochim. Biophys. Acta 939:267–276.

    PubMed  Google Scholar 

  19. Bechiavili, G. and Seelig, J. (1990)Biochemistry 29:10995–11000.

    PubMed  Google Scholar 

  20. Cevc, G. (1990)Biochim. Biophys. Acta 1031:311–382.

    PubMed  Google Scholar 

  21. Eksborg, S. (1977)J. Pharmaceut. Sci. 67:782–785.

    Google Scholar 

  22. McLennan, I. J., Lenkinski, R. E. and Yanuka, Y. (1985)Can. J. Chem. 63:1233–1238.

    Google Scholar 

  23. Righetti, P. G., Menozzi, M., Gianazza, E. and Valentini, L. (1979)FEBS Lett. 101:51–55.

    PubMed  Google Scholar 

  24. Van Deenen, L. L. M. and de Haas, G. H. (1964)Adv. Lip. Res. 2:168–229.

    Google Scholar 

  25. Comfurius, P. and Zwaal, R. F. A. (1977)Biochim. Biophys. Acta 488:36–42.

    PubMed  Google Scholar 

  26. Smaal, E. B., Romijn, D., Geurts van Kessel, W. S. M., de Bruijff, B. and de Gier, J. (1985)J. Lip Res. 26:633–637.

    Google Scholar 

  27. Rouser, G., Fleischer, S. and Yamamoto, A. (1970)Lipids 5:494–496.

    PubMed  Google Scholar 

  28. Demel, R. A., Geurts van Kessel, W. S. M., Zwaal, R. F. A., Roelofsen, B. and van Deenen, L. L. M. (1975)Biochim. Biophys. Acata 406:97–107.

    Google Scholar 

  29. Henry, N., Fantine, E. O., Bolard, J. and Garnier-Suillerot, A. (1985)Biochemistry 24:7085–7092.

    PubMed  Google Scholar 

  30. Chaires, J. B., Dattagupta, N. and Crothers, D. M. (1982)Biochemistry 21:3927–3932.

    PubMed  Google Scholar 

  31. Frézard, F. and Garnier-Suillerot, A. (1990)Biochim. Biophys. Acta 1036:121–127.

    PubMed  Google Scholar 

  32. Sturgeon, R. J. and Schulman, S. G. (1977)J. Pharmaceut. Sci. 66:958–961.

    Google Scholar 

  33. Cheneval, D., Müller, M., Toni, R., Ruetz, S. and Carafoli, E. (1985)J. Biol. Chem. 260:13003–13007.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Wolf, F.A. Binding of doxorubicin to cardiolipin as compared to other anionic phospholipids—An evaluation of electrostatic effects. Biosci Rep 11, 275–284 (1991). https://doi.org/10.1007/BF01127503

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01127503

Key Words

Navigation